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Abstract
Interpretability in sequential decision-making (SDM) systems is
critical for ensuring trust and transparency in human-robot collabo-
ration scenarios. As robots increasingly work alongside humans in
manufacturing, healthcare, and service environments, their decision-
making processes must be understandable to their human collabora-
tors. While significant progress has been made in interpretability for
single-step decision-making systems, there remains a lack of consol-
idated research on interpretability techniques for SDM systems. This
work analyzes various symbolic representations, evaluating their
interpretability and applicability for effective human-robot teaming.
We introduce a framework for analyzing these representations along
key dimensions including interpretability, temporal expressiveness,
and human-robot interaction capabilities. By synthesizing existing
work and highlighting open challenges, this work guides researchers
in selecting and designing interpretable symbolic representations
that enhance trust in human-robot collaborative tasks.
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1 Introduction
While substantial research has been conducted on interpreting single-
step decision-making systems [11, 17, 22, 28, 53], there remains a
significant gap in consolidating interpretability techniques for se-
quential decision-making (SDM) systems, particularly in symbolic
form. Existing work in this area has explored various approaches,
such as PDDL-like languages [24], decision trees [31, 37, 40], and
post-hoc explainability methods for reinforcement learning poli-
cies [42]. Additionally, some progress has been made in generating
interpretable policies for reinforcement learning [15, 43] and gener-
ating environments that can lead to interpretable behavior of SDM
systems [21]. However, these efforts are often fragmented, focusing
on specific aspects of SDM interpretability. This highlights the need
for a thorough review that organizes and synthesizes existing tech-
niques, making the way for more cohesive advancements in SDM
interpretability.

SDM systems, which form the core of autonomous robots and
collaborative agents, present unique interpretability challenges due
to their temporal dependencies and complex state spaces. In human-
robot collaboration scenarios, understanding a robot’s decision-
making process becomes crucial for effective teamwork and trust.
While neural approaches have shown strong performance in robot
control and decision-making, their black-box nature limits human
operators’ ability to predict and understand robot behavior. Symbolic
representations offer more structured, human-readable frameworks,
ranging from Finite State Machines to Markov Decision Processes

and Temporal Logic, making them valuable for collaborative settings
where humans need to quickly grasp robot intentions and reasoning.

However, these symbolic approaches face trade-offs between in-
terpretability and expressiveness. Simple representations like FSMs
offer clarity but limited scalability, while more powerful frameworks
like MDPs can become opaque as complexity grows - a critical con-
cern when robots need to explain their actions to human collaborators
in real-time. This work analyzes various symbolic representations
across key dimensions including interpretability, temporal expres-
siveness, and abstraction level, providing insights for developing
more interpretable robotic SDM systems that can facilitate natural
and efficient human-robot collaboration in real-world applications.

2 Sequential Decision Making Systems
Sequential decision-making (SDM) systems are characterized by
their ability to make a series of decisions over time, where each
decision influences the subsequent state of the system. Most com-
monly, such systems can be represented using a Markov Decision
Process (MDP) [33]. An MDP is defined by a set of states, actions,
transition probabilities, and rewards. At each time step, the system
is in a specific state, and an action is chosen based on a policy. The
action leads to a transition to a new state according to a probabilistic
transition function, and a reward is received based on the chosen
action and the resulting state. The goal is to find an optimal policy
that maximizes the cumulative reward over time. MDPs are widely
used in reinforcement learning, robotics, and control systems due to
their ability to model uncertainty and dynamic environments.

MDPs offer a structured and symbolic representation of decision-
making processes. States and actions can be labeled with meaningful
descriptions, making it easier to understand the high-level structure
of the system. For example, in a robotics application, states might
represent physical locations, and actions could correspond to move-
ments like “move forward” or “turn left.” This symbolic labeling
allows humans to trace the sequence of decisions and transitions,
providing insight into how the system operates.

However, the interpretability of MDPs is limited by their prob-
abilistic nature. While the states and actions are interpretable, the
transition probabilities between states are often represented as ma-
trices or tables, which can be difficult to comprehend, especially
in large systems. Additionally, the optimal policy derived from an
MDP (e.g., via value or policy iteration) may not always be intu-
itive, as it is based on maximizing long-term rewards rather than
following human-understandable rules. This can make it challenging
to explain why certain actions are preferred over others in specific
states. Despite this, there have been attempts to explain the decisions
made by known-MDP-based systems [12, 20]
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Figure 1: Trade-off between interpretability and expressiveness
in sequential decision-making representations

Classification Dimensions To address the aforementioned chal-
lenges, researchers have developed alternative approaches to rep-
resent SDM systems. There are many criteria using which we can
categorize these approaches. Tab. 1 presents seven such possible
classification criteria. We use the formalism types to classify these
approaches rather than the six other dimensions due to several practi-
cal considerations. First, many representations exhibit varying levels
of capability across these dimensions depending on their specific
implementation and application context. For example, a decision
tree’s interpretability level can range from high to low depending
on its depth and complexity, making strict categorization challeng-
ing. Second, these dimensions often interact in complex ways -
improvements in temporal expressiveness might come at the cost
of interpretability level, while domain specificity could affect both
abstraction level and explanation type. By focusing on representation
types, we can better explore these interactions and trade-offs.

Classification based on Formalism Type As illustrated in Fig. 1,
representations can be broadly categorized into three formalism
types: symbolic, subsymbolic, and hybrid. Symbolic representations
are explicit, logic-based, and rule-driven, making them highly inter-
pretable and well-suited for structured environments. Subsymbolic
representations, on the other hand, are data-driven and often rely
on machine learning techniques, enabling them to handle complex,
unstructured data but at the cost of interpretability. Hybrid repre-
sentations combine the strengths of both symbolic and subsymbolic
approaches, leveraging the interpretability of symbolic methods and
the flexibility of subsymbolic techniques to address challenges in
dynamic and uncertain environments. In the following sections, we
will explore the symbolic representations, followed by the hybrid
methods, highlighting their unique characteristics, applications, and
trade-offs. Since we are focusing on symbolic representations, we
exclude a detailed discussion on subsymbolic approaches.

3 Symbolic Representations
3.1 Finite State Machines (FSMs)
Finite State Machines (FSMs) are mathematical models that rep-
resent systems through distinct states, transitions, and associated
actions. Similar to a flowchart, FSMs use nodes to represent states

and arrows to show transitions between states based on specific
inputs or conditions. In sequential decision-making systems, each
decision point corresponds to a state, with transitions triggered by
specific choices. For instance, a customer service workflow might in-
clude states like "awaiting response," "under review," and "resolved,"
with transitions driven by customer or representative actions.

Interpretability: FSMs excel in interpretability through several
key mechanisms. States and transitions can be labeled with human-
understandable descriptions, making the logic easily traceable [35].
[14] identified four aspects supporting FSM interpretability: intuitive
graphical representation as cyclic, directed graphs; transparent com-
putation enabling manual verification; generative nature allowing
sampling and formal property queries; and extensive theoretical and
practical study making them accessible for system design. Recent
research has demonstrated FSMs’ value in interpreting complex sys-
tems like recurrent neural networks (RNNs). By converting RNNs’
intricate memory and observations into simplified states and tran-
sitions, FSMs can function like a digital map that highlights main
routes while abstracting away unnecessary complexity [16, 9].

Strengths and Limitations: FSMs offer several significant advan-
tages in sequential decision-making systems. They excel at simplify-
ing and tracing complex decision sequences, proving highly effective
for systems with clear, discrete decision points. Their ability to pro-
vide transparent and auditable decision trails makes them particularly
valuable for small to medium-sized systems. However, FSMs also
face notable limitations. They struggle with decisions requiring nu-
anced, continuous reasoning and face scalability challenges due to
state explosion in complex systems. Additionally, FSMs are not
well-suited for continuous or high-dimensional spaces, potentially
falling short in highly complex scenarios where more sophisticated
approaches might be necessary.

3.2 Decision Trees
Decision trees [2] are highly interpretable models structured in a tree-
like format, where each node represents a decision based on certain
specific conditions. The decision-making process begins at the root
node and follows a series of splits determined by feature thresholds
until reaching a leaf node that provides the predicted outcome. This
hierarchical structure enables a clear, step-by-step decision process
that makes SDM policies easily traceable and explainable [1].

Interpretability: The interpretability of decision trees stems from
their ability to decompose predictions into individual feature contri-
butions along the decision path. For any given instance, the predic-
tion can be understood as the mean target value plus the contributions
of each feature encountered during traversal. This transparency made
decision trees particularly valuable for classification and regression
tasks in data-driven systems [23]. Recent developments have fur-
ther enhanced their application in complex domains like creating
interpretable decision trees for challenging reinforcement learning
tasks [8, 31, 37, 40].

Strengths and Limitations: Decision trees offer significant advan-
tages in their interpretability and transparency, making them valuable
when clear explanation of decisions is required. Their step-by-step
nature allows for easy tracing of the decision process, and their
hierarchical structure provides intuitive understanding of feature
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Representation Interpretability
Level

Formalism
Type

Temporal
Expressiveness

Abstraction
Level

Explanation
Type

Domain
Specificity

Human
Interaction

Markov Decision Processes (MDPs) Medium Symbolic Discrete Time Low-Level Global General Indirect
Finite State Machines (FSMs) Medium Symbolic Discrete Time Low-Level Global General Direct
Decision Trees High Symbolic N/A Low-Level Global General Direct
Rule-Based Systems High Symbolic N/A Low-Level Global General Direct
Temporal Logic (LTL, STL, etc.) Medium Symbolic Continuous Time Low-Level Global Domain Indirect
Program Synthesis Low Symbolic N/A High-Level Global Domain Indirect
Planning Domain Definition Language
(PDDL)

Medium Symbolic Discrete Time High-Level Global Domain Indirect

Causal Models Medium Hybrid N/A Multi-Level Global General Indirect
Neuro-Symbolic Integration Low Hybrid N/A Multi-Level Global General Indirect

Table 1: Classification of Interpretable Representations for Sequential Decision-Making Systems along different dimensions

importance. However, they face notable limitations that can impact
their effectiveness. They are susceptible to overfitting, especially
with increased tree depth, which can lead to complex and less gen-
eralizable models [28]. They also struggle with linear relationships,
approximating them through step functions that can result in unstable
and unintuitive predictions. [37] note their difficulty in handling on-
line updates, particularly in reinforcement learning contexts. Despite
these challenges, decision trees remain widely used for interpretable
modeling, particularly when tree depth is constrained to maintain
simplicity and understandability.

3.3 Rule-Based Systems
Rule-based systems (RBSs) are a type of symbolic representation
where knowledge is encoded as “if-then” rules, consisting of a con-
dition (the “if” part) and an action or conclusion (the "then" part).
These systems mimic human reasoning by applying logical rules to
input data to derive decisions. While much of the interpretability
analysis of RBSs focuses on single-step decision-making [4, 54],
they can be easily extended to sequential decision-making. E.g., in
a traffic light control system, a rule might state: “If the north-south
road has heavy traffic and the east-west road is clear, then extend the
green light for north-south traffic.” RBSs are also used in industrial
automation, robotics, and workflow management, where sequences
of decisions must be made based on clear, logical rules.

Interpretability: Rule-based systems are highly interpretable due to
their explicit and transparent structure. Each rule is a self-contained
unit of logic that can be easily understood, validated, and modified.
This transparency makes it straightforward to trace how a sequence
of decisions was reached, which is critical in domains like traffic
control, industrial automation, and robotics. For instance, in a traf-
fic light system, operators can review and adjust rules to optimize
flow or adapt to changing conditions. This interpretability is a key
strength, particularly in applications where accountability and trust
are essential.

Strengths and Limitations: Rule-based systems offer significant
interpretability advantages, as their explicit "if-then" structure aligns
well with human reasoning and is easy to understand. This makes
them ideal for sequential decision-making in domains like traffic
control, where complex sequences of decisions must be explainable
and transparent. However, they struggle with scalability: as decision
sequences grow more complex, the number of rules can explode,
making systems difficult to manage. Additionally, rule-based sys-
tems are deterministic and lack flexibility in handling uncertainty

or adapting to dynamic environments. These limitations highlight
the need for hybrid approaches that combine the interpretability of
rule-based systems with the adaptability of other techniques.

3.4 Temporal Logic
Temporal logic is a formalism used to reason about sequences of
states or events over time. It provides a symbolic and mathematical
framework for expressing temporal properties, such as “eventually,”
“always,” or “until,” describing how a system evolves. Linear Tempo-
ral Logic (LTL) and Signal Temporal Logic (STL) are two prominent
variants. LTL is used for discrete systems and focuses on sequences
of states, while STL extends this to continuous signals, making it
suitable for real-time systems. Property Specification Language is
another such interpretable formalism used to express interpretable
temporal models [34]. Temporal logic is widely used in formal verifi-
cation, control systems, and robotics to specify and verify properties
like safety, liveness, and reactivity. E.g., in a robotic system, an LTL
formula might express: “The robot will eventually reach the goal
while avoiding obstacles.”

Interpretability: Temporal logic offers high-level, symbolic de-
scriptions of system behavior, which are interpretable when used
correctly [3, 10, 7, 35]. Its formal syntax allows precise specification
of temporal properties, such as “The system will always remain
safe,” providing clear and unambiguous representations. However,
interpretability depends on the user’s familiarity with its syntax and
semantics. For non-experts, the abstract nature of temporal logic
can be challenging, and interpreting verification results (e.g., why
a property was violated) often requires expertise. Also, it has been
shown that even for experts, STL can be tricky to interpret [38, 18].

Strengths and Limitations: Temporal logic is highly expressive and
formal, making it powerful for specifying and verifying temporal
properties in domains like control systems and robotics. Its symbolic
nature enables precise descriptions of complex behaviors. However,
this expressiveness comes with complexity: formulas can be difficult
to understand, and scalability becomes an issue in large or highly
complex systems. Despite these challenges, temporal logic remains
a valuable tool, especially when paired with visualization or natural
language translation to improve accessibility.

3.5 Program Synthesis
Program synthesis automatically generates human-readable pro-
grams that represent decision-making logic, often from high-level
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specifications or examples. These programs capture the rules or pat-
terns of a system in a structured, interpretable form, unlike traditional
“black-box” models. By producing code in familiar programming
languages or symbolic forms, program synthesis bridges the gap be-
tween complex, data-driven models and interpretable representations.
This makes it particularly valuable for sequential decision-making
systems, where understanding the reasoning behind decisions is
critical. For example, in robotics, synthesized programs can encode
decision sequences for navigation or task execution, providing clear
and actionable logic.

Interpretability: Program synthesis offers strong interpretability
when the generated programs are simple, well-structured, and writ-
ten in a language familiar to the end-user. This allows stakeholders
to trace decision-making step-by-step, verify logic, and even refine
the program [43, 41, 55]. For instance, in healthcare or finance, syn-
thesized programs can provide transparent explanations of decisions,
fostering trust and compliance with regulations. Additionally, pro-
gram synthesis can compactly represent complex logic in a human-
readable form, making it easier to communicate system behavior to
non-experts. However, interpretability can be compromised if the
synthesized programs become complex or use unfamiliar representa-
tions, limiting their accessibility.

Strengths and Limitations: Program synthesis excels in producing
interpretable, structured representations of decision-making logic,
making it ideal for domains requiring transparency, such as robot-
ics, healthcare, and finance. Its ability to generate human-readable
programs allows for verification, debugging, and refinement, align-
ing well with regulatory and ethical requirements. However, the
approach has limitations: synthesized programs can become convo-
luted for complex systems, reducing interpretability. Also, program
synthesis is computationally expensive and often restricted to do-
mains where code can effectively represent logic, hence cannot be
easily scaled [27]. These challenges highlight the need for careful
design and evaluation to balance interpretability and scalability.

3.6 PDDL (Planning Domain Definition Language)
The Planning Domain Definition Language (PDDL) [26] is a sym-
bolic language used to define planning problems and domains in
artificial intelligence. It provides a formal framework for specifying
actions, preconditions, effects, and goals. For example, in robotics,
an action like "pick up an object" might have preconditions (e.g.,
the robot must be near the object) and effects (e.g., the object is
now held by the robot). PDDL is widely used in AI planning for
applications such as robotics, logistics, and autonomous systems,
enabling the generation of plans to achieve goals.

Interpretability: PDDL is highly interpretable due to its explicit
and modular representation of planning domains [46, 47, 44, 45]. Its
structure separates actions, preconditions, effects, and goals, mak-
ing it easy to trace how plans are generated and executed. This
transparency is valuable for debugging and validation, as users can
inspect each step to understand the reasoning behind actions. PDDL’s
human-readable syntax also makes it accessible to domain experts,
fostering collaboration. PDDL domains can also be converted into
graph representations for enhanced interpretability, particularly in
smaller problem spaces. In such cases, states and actions become

nodes and edges in the graph, with the visual and modular nature
of the representation enabling users to understand system interac-
tions more intuitively [50]. However, interpretability depends on the
quality of the manually defined domain specification, which can be
time-consuming and error-prone, especially in complex domains.

Strengths and Limitations: PDDL excels in interpretability, offer-
ing a clear and modular representation of planning problems. Its
explicit separation of actions, preconditions, and effects makes it
easy to trace and validate plans, which is critical in domains like ro-
botics and logistics. Additionally, its human-readable syntax enables
collaboration with domain experts. However, PDDL has limitations:
manual domain specification is labor-intensive and prone to errors,
and the language struggles with uncertainty and scalability in large
or dynamic environments. These challenges highlight the need for
complementary techniques, such as automated domain learning or
probabilistic methods, to enhance its applicability [30, 36, 19, 6].

4 Hybrid Representations
4.1 Causal Models
Causal models [32] are frameworks designed to represent cause-
and-effect relationships in decision-making systems, moving beyond
traditional statistical correlations to uncover underlying mechanisms.
Using tools like directed acyclic graphs (DAGs), structural equa-
tion models, and counterfactual reasoning, these models explicitly
represent causal relationships between variables. They find wide-
spread application in domains such as healthcare, economics, and
policy-making, where understanding intervention impacts is crucial.

Interpretability: The interpretability of causal models stems from
their ability to explain the “why” behind decisions, not just what
happens. By explicitly modeling cause-and-effect relationships, they
enable reasoning about interventions and counterfactuals [52, 48].
For instance, in healthcare, these models can explain why specific
treatments lead to better outcomes, helping clinicians make informed
decisions. However, their interpretability heavily depends on the
accuracy of underlying assumptions and proper specification of
causal structures.

Strengths and Limitations: Causal models excel in providing ac-
tionable insights into decision-making processes, offering clear ex-
planations of why outcomes occur rather than just showing cor-
relations [25, 29, 51]. This makes them particularly valuable for
understanding intervention impacts in domains like healthcare and
policy-making. However, they face significant challenges in construc-
tion and validation, requiring precise domain knowledge and often
relying on assumptions that are difficult to verify. Their applicability
is also limited to domains where causality is well-defined, making
them less suitable for highly complex or uncertain environments.

4.2 Neuro-Symbolic Integration
Neuro-symbolic integration is an approach that combines the strengths
of neural networks (sub-symbolic AI) with symbolic reasoning meth-
ods to create systems that are both powerful and interpretable [49].
Neural networks excel at handling unstructured data, such as images,
text, and audio, and can learn complex patterns from large datasets.
However, they often operate as black boxes, making their decision-
making processes difficult to understand. Symbolic methods, on the
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other hand, use logical rules and structured representations to reason
about problems, providing clear and interpretable explanations but
struggling with scalability and flexibility. Neuro-symbolic integra-
tion seeks to bridge this gap by embedding symbolic reasoning into
neural networks or using neural networks to enhance symbolic sys-
tems. For example, in a medical diagnosis system, a neuro-symbolic
model might use a neural network to process patient data and a sym-
bolic reasoning component to apply medical guidelines, ensuring
both accuracy and interpretability.

Interpretability: Neuro-symbolic integration enhances interpretabil-
ity by merging the learning power of neural networks with the trans-
parency of symbolic methods [13]. This hybrid approach makes
decision-making more understandable, as users can see both data-
driven insights and logical rules. However, successful integration
depends on balancing performance and clarity, as poorly designed
systems may either complicate explanations or reduce accuracy.

Strengths and Limitations: Neuro-symbolic integration provides
strong interpretability, especially for complex tasks requiring both
data-driven learning and logical reasoning. It’s valuable in high-
stakes fields like healthcare and finance, where transparency is cru-
cial. However, the field is still developing, with tools not as mature as
purely neural or symbolic approaches. Designing effective systems
requires careful balance, and integration can add complexity, poten-
tially reducing interpretability if not done thoughtfully. Despite these
challenges, neuro-symbolic integration shows promise for building
capable and understandable AI systems.

5 Future Directions
Future research in interpretable AI should focus on hybrid neuro-
symbolic approaches that combine the scalability of neural networks
with the interpretability of symbolic reasoning, while addressing
challenges like balancing performance and transparency. Scalability
improvements, such as hierarchical representations and rule sim-
plification, can mitigate state explosion in symbolic systems. Ad-
ditionally, integrating probabilistic reasoning into symbolic frame-
works will enhance their applicability in uncertain environments.
Human-centered design, including natural language explanations
and interactive visualizations, is essential for making interpretabil-
ity accessible to non-experts. Standardized evaluation metrics for
interpretability, domain-specific adaptations, and advancements in
explainable reinforcement learning are also critical areas for ex-
ploration. Furthermore, despite some efforts [5, 39], most existing
works including the ones covered in this paper, define interpretability
and explainability loosely, highlighting the need for greater effort
in formalizing these terms to establish clearer and more consistent
frameworks. Finally, user studies involving domain experts and end-
users will help identify effective interpretability techniques for SDM
systems.

6 Analysis and Discussion
Interpretability in sequential decision-making systems is a critical
challenge, particularly as these systems are increasingly deployed
in high-stakes domains such as healthcare, autonomous systems,
and finance. This work has explored a wide range of symbolic rep-
resentations, each with its own strengths and limitations in terms

of interpretability, expressiveness, and applicability. Finite State
Machines (FSMs) and Decision Trees, for example, excel in trans-
parency and simplicity but struggle with scalability and continuous
reasoning. On the other hand, Temporal Logic provide powerful
tools for modeling uncertainty and temporal dynamics but often
sacrifice interpretability as system complexity grows. Rule-based
systems and Program Synthesis offer modular and human-readable
explanations but face challenges in handling uncertainty and scaling
to complex environments.

A key insight from this work is that no single representation is
universally superior. The choice of representation depends on the
specific requirements of the application, including the need for trans-
parency, the complexity of the decision-making process, and the
domain-specific constraints. For instance, in domains where account-
ability and trust are paramount, such as healthcare or legal systems,
rule-based systems (and their natural language explanations) may be
preferred. In contrast, for dynamic and uncertain environments like
robotics or autonomous driving, classic MDPs or neuro-symbolic
integration may offer a better balance between performance and
interpretability. Another important consideration is the trade-off
between interpretability and expressiveness. Highly interpretable
representations like FSMs and Decision Trees are often limited in
their ability to model complex or continuous systems, while more
expressive frameworks like MDPs and Temporal Logic can become
difficult to interpret as they scale. This trade-off highlights the need
for hybrid approaches that combine the strengths of different repre-
sentations. For example, neuro-symbolic integration aim to bridge
the gap between the high performance of sub-symbolic models and
the transparency of symbolic methods.

7 Conclusion
Our comprehensive analysis of symbolic representations in sequen-
tial decision-making systems reveals that no single approach offers
a universal solution. While simpler representations like FSMs and
Decision Trees provide transparency, they struggle with scalability.
Conversely, more sophisticated approaches like MDPs and Temporal
Logic offer greater expressiveness but become opaque as complex-
ity increases. This inherent trade-off between interpretability and
expressiveness suggests the need for hybrid approaches, particularly
in domains ranging from healthcare to autonomous systems where
both performance and transparency are crucial.

Future work should address several key challenges: developing
scalable methods for extracting interpretable symbolic representa-
tions, establishing standardized evaluation metrics for sequential
interpretability, exploring effective combinations of multiple sym-
bolic representations, and conducting empirical studies on how dif-
ferent stakeholders interact with these representations to inform
user-centric design.

The future of interpretable sequential decision-making lies at the
intersection of symbolic clarity and modern machine learning. As
these systems become prevalent in critical applications, develop-
ing frameworks that balance transparency, scalability, and domain
requirements becomes paramount. Our analysis provides a foun-
dation for advancing the field toward transparent and trustworthy
decision-making systems while maintaining real-world performance.
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