In ICML 2020 Workshop on Human in the Loop Learning (HILL 2020)
Vienna, Austria (Virtual)

Learning Interpretable Models for Black-Box Agents

Pulkit Verma! Siddharth Srivastava !

Abstract

This paper develops a new approach for learning
a STRIPS-like model of a non-stationary black-
box autonomous agent that can plan and act. In
this approach, the user may ask an autonomous
agent a series of questions, which the agent an-
swers truthfully. Our main contribution is an al-
gorithm that generates an interrogation policy in
the form of a contingent sequence of questions to
be posed to the agent. Answers to these questions
are used to learn a minimal, functionally indistin-
guishable class of agent models. This approach
requires a minimal query-answering capability
from the agent. Empirical evaluation of our ap-
proach shows that despite the intractable space
of possible models, our approach can learn inter-
pretable agent models for a class of black-box
autonomous agents in a scalable manner.

1 Introduction

Growing deployment of autonomous agents leads to a per-
vasive problem: how would we ascertain whether an au-
tonomous agent will be safe, reliable, or useful in a given
situation? This problem becomes particularly challenging
when we consider that most autonomous systems are not
designed by their users; their internal software may be un-
available or difficult to understand; and they may adapt
and learn from the environment where they are deployed,
invalidating design-stage knowledge of agent models.

Such scenarios feature two properties that limit the appli-
cability of existing approaches for model learning: they
feature (a) non-stationary agents and environments, which
evolve with the situation and do not present sufficient obser-
vational data for pure statistical learning and (b) black-box
autonomous agents that may not be aware of a user’s pre-
ferred model representation.

!School of Computing, Informatics, and Decision Systems
Engineering, Arizona State University, Tempe, AZ 85281 USA.
Correspondence to: Pulkit Verma <verma.pulkit@asu.edu>.

2" JCML Workshop on Human in the Loop Learning, 2020.
Copyright 2020 by the author(s).

Black-box
Autonomous Agent

A

Agent Interrogation
Algorithm

!

M‘A Agent Model

Figure 1: The agent interrogation framework

This paper presents a new approach for estimating an inter-
pretable, relational model of a black-box autonomous agent
that can plan and act, by interrogating it. Our approach is
inspired by the interview process that one typically uses to
determine whether a human would be qualified for a given
task. Consider a situation where Hari(ette) (7) wants their
autonomous robot (A) to clean up their lab, but s/he is
unsure whether it is up to the task and wishes to estimate
A’s internal model in an interpretable representation that
s/he is comfortable with (e.g., a relational STRIPS-like lan-
guage (Fikes & Nilsson, 1971; Fox & Long, 2003)). Thus,
‘H may ask A a series of questions, e.g., “What do you think
will happen if you picked up bottle 1, bottle 2 and bottle
3 in succession?” Naive approaches to the problem would
require too many questions and place strong requirements
on A’s knowledge of H’s preferred representations'. If this
problem could be solved efficiently, lay persons would be
able to efficiently determine the applicability of a wide class
of adaptive, non-stationary black-box agents by interrogat-
ing them, thus improving the overall usability as well as
field-debuggability of autonomous systems.

We use a rudimentary class of queries that makes our ap-
proach applicable on a broad class of agent implementa-
tions including simulator-based and analytical model-based
agents: we use plan outcome queries that ask A what, ac-
cording to it, would be the outcome of executing the longest
executable prefix of a hypothetical plan 7 on a hypothetical
initial state s. These are the only queries that .4 needs to
support for our approach to be applicable. Fig. 1 illustrates

'Just 2 actions and 5 grounded propositions would yield
925 ~ 10? possible STRIPS models — each proposition could be
absent, positive or negative in the precondition and effects of each
action. A query strategy that inquires about each occurrence would
be not only unscalable but also inapplicable on simulator-based
agents that do not know their actions’ preconditions and effects.

Learning Interpretable Models for Black-Box Agents

the overall paradigm. Our approach generates a sequence of
queries (Q) depending on the agent’s responses (R) during
the query process; the result of the overall interrogation
process is a complete model of A . In order to generate
queries, we present a top-down process that eliminates large
classes of agent-inconsistent models by computing queries
that discriminate between pairs of abstract models. When
an abstract model’s answer to a query differs from the agent
answer, we effectively eliminate the the entire set of pos-
sible concrete models that are refinements of this abstract
model.

In developing the first steps towards this paradigm we as-
sume that the user wishes to estimate .A’s internal model
as a STRIPS-like relational model with conjunctive pre-
conditions, add lists, and delete lists (and that the agent’s
model is expressible as such), although our framework can
be extended to handle other types of formal domain repre-
sentations. Further, we assume that the agent has functional
definitions for the relations and actions in the user’s vo-
cabulary (these definitions can be programmed as Boolean
functions over the state), and that it always answers truth-
fully.

Related Work A number of researchers have explored
the problem of learning agent models from observations
of its behavior (Yang et al., 2007; Cresswell et al., 2009;
Cresswell & Gregory, 2011; Stern & Juba, 2017). To the
best of our knowledge, ours is the first approach to address
the problem of generating query strategies for inferring
relational models of non-stationary black-box agents. Ca-
macho & Mcllraith (2019) recently presented an approach
for learning LTL models from an agent’s observed state tra-
jectories using an Oracle with knowledge of the target LTL
representation. The oracle could also generate counterex-
amples when the estimated model differed from the true
model. Amir & Chang (2008) use logical filtering (Amir &
Russell, 2003) to learn partially observable action models
from action and observation traces. LOCM (Cresswell et al.,
2009) and LOCM2 (Cresswell & Gregory, 2011) present
another class of algorithms that use finite-state machines to
create action models using plan traces. LOUGA (Kucera
& Bartdk, 2018) uses a combination of genetic algorithm
and an ad-hoc method to learn planning operators using
plan traces. FAMA (Aineto et al., 2019) reduces model
recognition to a planning problem, whose solution when
used with a post-processing step similar to LOUGA, gives
the action model. FAMA, and many such approaches, fail
to handle negative literals in action’s preconditions. Ad-
ditionally, using post-processing step can result in failure
to converge in the presence of spurious predicates in the
observed plan traces. Khardon & Roth (1996) address the
problem of making model-based inference faster given a set
of queries, under the assumption that a static set of models
represents the true knowledge base. Incremental Learning

Model (Ng & Petrick, 2019) use reinforcement learning to
learn the non-stationary model without using plan traces.
Most of these learners rely on ground truth model to de-
termine when the training may be stopped and the action
model learnt is correct. So in absence of ground truth model,
these methods will not know when to stop learning. While
these prior approaches address the problem of learning mod-
els from training data, they do not address the problem of
estimating agent models in situations where the agent or
the environment are not stationary — i.e., where the agent
may learn, where it may be provided with system updates,
or where the environment changes such that the distribution
that the training data came from is no longer representative
of the deployment.

In contrast, our approach is not limited to stationary settings
since it acquires current information using auto-generated
queries. So every time the underlying agent model changes,
it can interrogate the agent and use updated responses. More-
over, our approach does not require .A to provide interme-
diate states in an execution, or to have an Oracle that could
provide counterexamples or assess the correctness of the cur-
rent model estimate. In contrast to approaches for white-box
model-maintenance (Bryce et al., 2016), our approach does
not require A to know about H ’s preferred representation
language.

The field of active learning (Settles, 2009) addresses the
related problem of selecting which data-labels to acquire for
learning single-step decision-making models using statisti-
cal measures of information. But effective feature set here
is the set of all possible plans, so conventional methods for
evaluating information gain of each plan will be insufficient.
In contrast, our approach uses a hierarchical abstraction to
select questions to ask while inferring a multi-step decision-
making (planning) model. Information-theoretic metrics
could also be used in our approach when such information
is available.

The rest of this paper is organized as follows. The next
section presents some background terminology used in this
paper and explains our approach. Section 3 discusses the
empirical evaluation of our approach; and Section 4 high-
lights our main conclusions and directions for future work.

2 The Agent-Interrogation Task

We assume that # needs to estimate .4’s model using a
STRIPS-like planning model (Fikes & Nilsson, 1971) with
conditional effects (in accordance with PDDL (Fox & Long,
2003)) represented as a pair M = (P, A), where P =
{p1,...,pn} is a finite set of predicates; A = {a1,...,ar}
is a finite set of parameterized actions. Each action a; € A
is represented as a tuple (header(a;),pre(a;),eff(a;)),
where header(a;) is the action header representing action
name and action parameters, the states where action a; can

Learning Interpretable Models for Black-Box Agents

7, selected by
arbitrary <p,a,l>
ordering |

{2}

3
[This part !
! li,,}','} {4,754 of lattice not |
‘ Ay | traversed !
: ‘ 75 ‘ J
' Queryusedto 25— N\ L.
Y\ pruneB,C

Detailed in (b)

(@) . (b)

Figure 2: (a) A subset lattice created using pal-tuples; (b) Detailed view of a portion of lattice (marked in (a)) illustrating how partitions

are created and pruned.

be applied are defined by preconditions pre(a;), the result-
ing predicates that will change to true or false are defined as
effects eff{a;). The effects can also be conditional, i.e. of
the form ¢ — eff, where c is the condition under which the
effect eff should be applied. Each predicate can be instan-
tiated using the parameters of an action where number of
parameters are bounded by the maximum arity of the action.
For example, consider the action load_truck(?v1, 7v2, 7v3)
and predicate at(?x, ?7y) in Logistics domain. The predicate
can be instantiated using action parameters v1, v2, and v3
as at(?vl, 7vl), at(?vl, 702), at(?vl, ?03), at(?v2, Tvl),
at(?v2,702), at(?2,?703), at(?v3,?vl), at(?v3,7v2),
and at(?v3,7v3). We represent set of all such possible
predicates instantiated with action parameters as P*.

The only information # has is the header(a) of actions
a € A that A can perform. We denote the set of headers for
all actions by A g. As noted in the Introduction, A has func-
tional definitions of the predicates (with their parameters)
in H’s vocabulary, and therefore there is sufficient informa-
tion for a dialog between H and A about the outcomes of
hypothetical action sequences.

We define the overall problem of agent interrogation as fol-
lows. Given a class of queries and an agent with an unknown
model who can answer these queries, determine the model
of the agent. More precisely, an agent interrogation task is
defined as a tuple (M, Q) where M+ is the true model of
the agent (unknown to the interrogator) being interrogated,
and Q is the class of queries that can be posed to the agent
by the interrogator. Let © be the set of possible answers
to queries. Thus, strings 8* € ©* denote the information
received by H at any point in the query process. Solutions
to the agent interrogation task takes the form of a set of
possible models and uses a query policy 8* — Q U {Srop}

that maps sequences of answers to the next query that the
interrogator should ask. The process stops with the Stop
query. In other words, V answer § € ©, all valid query
policies map all sequences z6 to Stop whenever z € ©*
is mapped to Stop. This policy is computed and executed
online.

Components of Agent Models In order to formulate
our solution approach, we consider a model M to be
comprised of components called palm tuples of the form
A = (p,a,l,m) where p is an instantiated predicate from
the common vocabulary P*; a is an action from the set of
parameterized actions A, [€ {pre, eff} and m € {+, —, 0}.
For convenience, we use subscripts p, a, [or m to denote the
corresponding component in a palm tuple. The presence of
a palm tuple A in a model denotes the fact that in that model,
the predicate)\, appears in an action A, at a location),
as a true (false) literal when sign \,, is positive (negative),
and is absent when \,,, =). This allows us to define the
set-minus operation M \ A on this model as removing the
palm-tuple A from the model.

We consider two palm tuples A\; = (p1,a1,l1,m1) and
A2 = (pa,ag,la, m2) to be variants of each other (A ~
X2) iff they differ only on m, ie. A\ ~ Ay & (A1, =
)\Qp) AN ()\10’ = AQ(]’) AN (All =)\Ql) A ()\1m 7é)\gm). Hence
mode assignments to a pal tuple v = (p, a,) can result in
3 palm variants v* = (p,a,l,+), v~ = (p,a,l,—), and
Y = (p,a,1,0).

Model Abstraction We are now ready to define the no-
tion of abstractions used in our solution approach. Several
approaches have explored the use of abstraction in plan-
ning (Sacerdoti, 1974; Giunchiglia & Walsh, 1992; Helmert
et al., 2017; Biackstrom & Jonsson, 2013; Srivastava et al.,
2016). The following definition extends the concept of

Learning Interpretable Models for Black-Box Agents

predicate and propositional domain abstractions (Srivastava
et al., 2016) to allow for the projection of a single A tuple.

Definition 1. Let I/ be the set of all possible models. The
abstraction of a model M, on the basis of a palm tuple A, is
given by fy : M +— (M\ X), where f : U - U. Aset X
is said to be a model abstraction of a set of models M with
respect to a A-tuple, if X = {f\(m):m € M}.

We also use the notation M’ Ty M to represent the sit-
uation where fy(M) = M’. We use this abstraction
framework to define a subset-lattice over abstract models
(Fig. 2(a)). Note that at each node we can have all possible
variants of a pal tuple. For example, in the topmost node
in Fig. 2(b), we can have models corresponding to fyf' s YL s
and 7?. Each node in the lattice represents a collection of
possible abstract models at the same level of abstraction. As
we move up in the lattice, we get more abstracted version
of the models and we get more concretized models as we
move down.

Definition 2. A model lattice L is a 5-tuple L =
(N,E,T',{n,lE), where N is a set of lattice nodes, T’
is the set of all pal tuples (p,a,l), {y : N — 22" is
a node label function where A = T' x {+,— 0}, E is
the set of lattice edges, and ¢y : E — I is a func-
tion mapping edges to edge labels such that for each edge
ni = nj, En(ng) = {AU{Y*}A € Iy (ni),y = le(ni —
le), ke {+, - @}}

The supremum T of the lattice £ is the most abstracted
node of the lattice, whereas the infimum _ is the most
concretized node. Also, a node n € N in this lattice £
can be uniquely identified as the sequence of pal tuples that
label edges leading to it from the supremum. As shown in
Fig. 2(b), even though theoretically £ : n > 22A, only one
of the sets is stored at each node as the others are pruned
out based on Q. Also, in these model lattices every node
has an edge going out from it corresponding to each pal
tuple that is not present in the paths leading to it from the
most abstracted node. At any stage during the interrogation,
nodes in such a lattice are used to represent the set of models
that are possible given the agent’s responses up to that point.
At every step, our query-generation algorithm will create
queries that help us determine the next descending edge to
take from each lattice node.

Form of Agent Queries As discussed earlier, we pose
queries to the agent and based on the responses we try to
infer the agent’s model. We express queries as functions
mapping models to answers. More precisely, let U be the
set of possible models and R a set of possible responses. A
query Q is a function Q : U — R.

In this paper we utilize only one class of queries: plan
outcome queries, which are parameterized by a state sz and
a plan 7.

Plan outcome queries (Qpo) ask the agent the length of
the longest prefix of the plan 7 that can be executed suc-
cessfully when starting in the state sz € 2%, and the result-
ing final state. E.g., “Given that the truck ¢/ and package
pl are at location [/, what would happen if you executed
load_truck(pl,t1,11), drive(t1,11,12), unload_truck(p1,t1,12)?

A response to these queries can be of the form “I can execute
the plan till step ¢ and at the end of it p/ is in truck ¢/ which
is at location /7. Formally, the response Rpo for plan
outcome queries is a tuple (¢, sx), where £ is the number
of steps for which the plan 7 was successfully able to run,
and sz € 2 is the final state of the agent after executing £
steps of the plan. If the plan 7 is not executable according
to the agent model M then ¢ < len(r), otherwise if 7 is
executable then £ = len(n). The final state s € 2F such
that MA = 7[0: £](sz) = s, i.e. starting with a state
s7, MA successfully executed first £ steps of plan 7. Thus,
Opo : U — N x 2P where N is the set of natural numbers.

Not all queries are useful, as some of them might not in-
crease our knowledge of the agent model at all. Hence we
define some properties associated with each query to ascer-
tain its usability. A query is useful only if it can distinguish
between two models. More precisely, a query Q is said
to distinguish a pair of models M, and M, denoted as
M1 CM;, iff Q(M;) # Q(M;).

Given a pair of abstract models, we wish to determine
whether one of them can be pruned — i.e., whether there’s a
query on which its answer is inconsistent with the agent’s
answer. Since this is computationally expensive to deter-
mine and we wish to reduce the number of queries made to
the agent, we first evaluate whether the two models can be
distinguished by any query, independent of consistency with
the agent. If the models are not distinguishable, it doesn’t
make sense to try to prune one of them under the given
query class. Formally,

Two models M; and M are said to be distinguishable,
denoted as M| M, iff there exists a query that can distin-
guish between them, i.e. 3Q MM e

In determining prunability, we need to consider the fact that
the agent’s response may be at a different level of abstraction
if the given pair of models is abstract. When comparing the
responses of two models at different levels of abstraction, we
must also evaluate if the response of abstracted model M’
is consistent with that of the agent, i.e. (M%) = Q(M’).
For plan outcome queries, consider that QPO(MA) =
<€7 <p17 s 7pk>> and QPO(M/) = <€/7 <p/17 s 7p;>> Now
we can say that Qpo(MA) | Qpo(M') iff (¢ = 1),
j<kandVie{l,...,5} Ap; = Api.

Definition 3. Given an agent-interrogation task (M%, Q),
two models M; and M are prunable denoted as M; () M,
iff 30 € Q : M]1°M; A (QMA) = Q(M;) A

Learning Interpretable Models for Black-Box Agents

(a) M*’s load_truck (?p, ?t, ?1) action (unknown to)
at (?t,?1), — in(?p,?t),

at (?p, ?1) - (at (?p,21))
(b) M1’s load_truck (?p, ?t, ?1) action

at (?t,?1), — in(?p, ?t)

at (?p,?1)

(¢) M2’s load_truck (?p, ?t, ?1) action
[[at (?t,?1) — in(?p, ?t)]

(d) M3’s load_truck (?p, ?t, 21) action
[at(zt,?1) — 0 |

Figure 3: load_truck actions of the agent model M and three
abstracted models M1, M3, and M3. Here X — Y means that
X is the precondition of an action and Y is the effect.

QMA) [Q(M;)) V (QIMA) = Q(M;) A QIMA) =
Q(M;)).

2.1 Solving the Interrogation Task

Our approach iteratively generate pairs of abstract models
and eliminates one of them by asking .A queries and compar-
ing its answer with that generated using the abstract models.

Example 1. Consider the case of a delivery robot. Assume
that #H is considering two abstract models M7 and Ms
having only the predicates at(?p, ?1), at(?t, 1), in(?p, 7t)
and the agent’s model is M- (Fig. 3). H can ask the agent
what will happen if A loads up package p1 into truck t1 at
location 11 twice. The agent would respond that it could
execute the plan only till length 1, and the state at the time
of this failure was at(t1,11) A in(pl,t1).

Algorithm 1 shows our overall algorithm for interrogating
autonomous agents. It takes the agent 4, the set of instan-
tiated predicates P*, and set of all action headers Ay as
input and gives the set of functionally equivalent estimated
models represented by poss_models as output. We initial-
ize poss_models as empty set (line 3) representing that we
are starting at the most abstract node in model lattice.

In each iteration of the main loop (line 4), we keep track
of the current node in the lattice. We pick a pal tuple v
corresponding to one of the descending edges in the lattice
from n given by some input ordering of I'. The correctness
of the algorithm does not depend on this ordering. We
then generate all the new sets of models at the current node
represented by the new_models (line 5). We also initialize
an empty set at each lattice node to store the pruned models
(line 6).

The inner loop (line 7) iterates over the set of all possible
models poss_models. Each abstract model represented by
M is then refined with the pal tuple v giving three differ-
ent models and form pairs from these models and iterate over

Algorithm 1 Agent Interrogation Algorithm
1: Input: A, Ay, P*
2: Qutput: poss_models
3: Initialize poss_models = {(}
4: for 7 in some input pal ordering I' do

5. new_models < poss_models x {7y, y~,~%}
6: pruned_models= {0}
7: for each M?* in poss_models do
8: (MEM MO = (M U yF M U
v, Mabs U ,YQ}
9: for each pair {M;, M} in {M:/*,M;,Mg} do
10: Q ¢« generate_query(M;, M)
11: Mprune <filter_models(Q, MAM,;, M)
12: pruned_models<— pruned_modelsUM . yne
13: end for
14: end for
15: if pruned_models is () then
16: update_pal_ ordering(1")
17: continue
18: endif

19: new_models < new_models \ pruned_models
20: poss_models<— poss_models U new_models
21: end for

these pairs (line 8 and 9). Here M represents the abstract
models equivalent to M3 U {y™}, where m € {+, —,0}.

For each pair, we generate a query Q using generate_query()
that can distinguish between the models in that pair (line
10). We then call filter_models() which poses the query Q to
the agent and the two models. Based on their responses, we
prune the models whose responses were not consistent with
that of the agent (line 11). Then we update the estimated
set of possible models represented by poss_models (line 19
and 20).

If we are unable to prune any models at a node (line 15), we
update the order in which pal tuples are considered for re-
finement (line 16). We continue this process until we reach
the most concretized node of the lattice (meaning all possi-
ble model components A € A are refined). The remaining
set of models represent the estimated set of models for the
agent. This algorithm would require O(|A| x |P*|) queries.
However, our empirical studies show that we never generate
so many queries. Next three sections describes the gener-
ate_query() (line 10) component, the filter_models() (line
11) component, and the update_pal_ordering() component
(line 16) of the algorithm respectively.

2.2 Query Generation

The query generation process corresponds to gener-
ate_query() module in algorithm 1 which takes 2 models
M, and M as input and generates a query Q that can dis-
tinguish them, and if possible, satisfy prunability condition

Learning Interpretable Models for Black-Box Agents

(a) Mi’s load_truck (?p, ?t, ?1) action

A= (at (?t, ?1),load_truck (?p, 2t, 21),effect,D)
at (?t,?1), — in(?p,?t),
at (?p, ?1) - (at (?p,?1))

(b) M3’s load_truck (?p, ?t, 21) action
At = (at (2t, ?1),load_truck (?p, ?t, 21) , effect,+)
at (?t,?1), — in(?p, ?t),
at (?p, ?1) - (at (?p,?1)),
at (?t,?1)

Figure 4: Two abstracted model variants that are function-
ally equivalent

too.

Plan outcome queries can distinguish between models dif-
fering in either preconditions or effects of some action. We
reduce the problem of creating plan outcome queries to a
planning problem. The idea is to maintain a separate copy
PM:i and PMi of all the instantiated predicates P, and
formulate each precondition and effect of an action as a
formula of predicates in both the copies of the predicates.

Let the planning problem Ppo = (M9 sz, sg), where
MPFO is a model with predicates Ppro — pMiypM; Up~,
and actions A where for each action a € A, pre(a) =
pre(a™i) V pre(a™i) and eff(a) = (when(pre(a™) A
pre(@™9))(effla™) A eff(a™7)) (when((pre(a™) A
~pre(a™)) V (=pre(a™i) A pre(a™))) (ps)). sz =
s2% A 53 s the initial state where 557 and 55 are
different copies of all predicates in the initial state, and sg
is the goal state and it is expressed as Ip (p™: A —p™i) v
(=p™Mi ApMi) v p,.

With this formulation whenever we have at least one action
in both the models which has different effects in both of
them, the goal will be reached. For example, consider the
models M- and M; mentioned in Fig. 3. On applying the
load truck(pl,t1,11) action from the state where the action
can be applied in both the models, one of them will lead to
at(pl,11) being false and the other will not. Hence starting
with an initial state sz = at(t1,11) A at(pl,11), the plan to
reach the goal will be load_truck(pl,t1,11).

Also, whenever we have an action a which cannot be applied
in the same state sy in both the models, the planner will
generate a plan to take the agent from the initial state to state
sS4, and append action a to that plan. This new plan will
be the solution to the planning problem Ppo. For example,
consider the models M and M mentioned in Fig. 3. In a
state where at(t1,11) is true and at(pl,11) is false, we can
apply load_truck(pl,t1,(1) in My but not in M;. Hence
for an initial state sz = at(t1,11) A —at(pl,11), the plan to
reach the goal will be load_truck(pl,t1,11).

If no solution exists for the planning problem Ppg, then it
implies that the two models are functionally equivalent, and

no combination of initial state and a plan can distinguish
between them. An intuitive example of this will be a pair of
models where in one of the model the same literal appears
in both the preconditions and effects, whereas in the other
model the same literal appears only in the precondition. For
example, consider the models M; and My shown in Fig.
4, any plan including load_truck(?p, ’t, ?1) action will have
at(?t,?1) in precondition. According to both the models, it
will also be present after executing the action, hence these
models cannot be distinguished based on this query gener-
ation process, even though their STRIPS encoding is not
syntactically same. Previous works like LOUGA (Kucera
& Bartak, 2018) handle this by making assumption that a
predicate is deleted from a state by an action only if it is al-
ready present in the state, and a predicate is added only if it
is not present in the state already. This assumption prevents
models like M from being considered as valid models. We
also apply these assumptions to reduce the computation, and
this process is called normalization. The following theorem
formalizes these notions.

Theorem 1. Given a pair of models M; and M, the plan-
ning problem Ppo has a solution iff M; and M have a
distinguishing plan outcome query Qpo.

Proof (Sketch). Qpo comprises of an initial state sz and
plan 7. The initial state sz in Q@ po and Ppo is same. Start-
ing with this initial state, an action becomes a part of the
plan 7 only when it can be applied in any one or both of
the models M; and M;. So two cases arise here, if the
action can be executed in both the models, the effect of
both the actions is applied to the state and next action is
searched. Otherwise if the action is applicable only in one
of the models, but not the other, the effect of the action is a
dummy proposition p., which is also the goal. So as soon
an action is found that is possible in one of the models but
not the other, or if it gives different resulting states in both
the models, the resulting plan becomes the plan needed by
query Qpo. Hence if the planning problem Ppo gives a
solution plan 7, then there exists a query Q po that consists
of sz and 7 as input.

Also, as described previously, whenever there exists a distin-
guishing plan-outcome query, the starting state sz is part of
Qpo, and the way we generate the Ppo problem ensures
we will get a plan 7 as the solution. O

2.3 Filtering Possible Models

This section describes the filter_models() module in algo-
rithm 1 which takes as input the agent model M+, the two
abstract models being compared M; and M ;, and the query
Q (generated by the generate_query() module explained in
section 2.2), and returns the subset M,;yne Which is not
consistent with M4,

Learning Interpretable Models for Black-Box Agents

Firstly, the algorithm asks the query Q to both the models
M, and M, and the agent M. Based on the responses of
all three, it determines if the two models are prunable, i.e.
M; () M. As mentioned in Def. 3, checking for prunability
involves checking if responses to the query Q by one of the
models M; or M is consistent with that of the agent or
not.

If the models are prunable, let the model not consistent with
the agent be M’ where M’ € {M;, M }. Now recall that
a model is a set of palm tuples. As shown in Fig. 2, based
on response to a query, if a model is found to be inconsistent
for the first time at a node n in the lattice, with an incoming
edge of label +, any model with same mode of y as M’ will
also be inconsistent. This is because a palm tuple uniquely
identifies the mode in which a predicate will appear in an
action’s location which can be precondition or effect. And
since this tuple is inconsistent with the agent, any model
containing this will also contain the same mode of predicate
in that action’s precondition or effect. This idea paves way
for the concept of partitions which is discussed below.

Given lattice nodes n; and n;, the edge n; — n; labeled ~,
and the set A of palm tuples present at the parent node n;, a
partition of node n; is the set of disjoint subsets A U {7},
AU{~y~},and AU {7”}. So depending on the model M’
which is inconsistent with agent model M-, we can prune
out the whole partition containing M’. This partition is
returned by filter_models() module as M p,yne -

2.4 Updating pal ordering I'

Models may not be prunable if the query is not executable
by A and none of the model’s query responses are consis-
tent with that of the agent. For eg, consider two abstract
models My and M3 being considered by the human inter-
rogator H (Fig. 3). At this level of abstraction, H does
not have knowledge of predicate at(?p, ?l), hence it will
generate a plan outcome query with initial state at(?t, 71)
and plan load_truck(pl,t1,11) to distinguish between M
and M3. But this cannot be executed by agent A as the
precondition at(?p, ?1) is not satisfied. In such cases, we
cannot discard any partitions. Hence if no prunable query
is possible, i.e. the palm tuple set A being considered is
last in poss_models, we update the pal ordering. Recall
that in response to the plan outcome query we get the failed
action apq; = w[f+1] and the final state sz. Let us as-
sume that the query was executable on M;, but not on M ;.
Now assuming M; is an abstracted version of MA, let the
state it reaches after executing first ¢ steps of the plan be
5r. Now we can infer that one of the literal present in
sr \ S (represented as {l1,...,l;}) is causing the action
aqq to fail. We now generate a new query with sz = 5
and keeping a subset of {—l; ...l }. With this sz as ini-
tial state, the agent A should be able to execute the plan

T = apq;. In next step we change the initial state sz to
S Al and remove [from the subset we found earlier.
If A still executes @ = apq;, then [, was not the literal
responsible for the failure of ap,;; and we change sz to
Sr Al A l,_1, otherwise we can infer that [, was indeed
one of the literals responsible for failure of arg;;, and we
change sz to 5 A =l A lx—1. We do this k times to deter-
mine the literals responsible for failure of action apg;;. For
each of such literals causing the failure, we get their cor-
rect palm tuples. For eg. if we inferred that at(?p, 71) was
not present in the state and hence was causing the action
load truck(?p,7t,?l) to fail, we get the correct palm tu-
ple as {(at(?p, ?1), load_truck(?p, t, 1), precondition, +).
We need not refine in terms of the corresponding pal tuple
(at(?p,), load truck(?p, 7t, 1), precondition) in future,
so we update the pal ordering I' by removing it from I'.

2.5 Correctness of Agent Interrogation Algorithm

In this section we prove that the set of estimated models
returned by the agent interrogation algorithm are correct
and are functionally equivalent to the agent’s model, and no
correct model was ever discarded in the process.

Theorem 2. The Agent Interrogation Algorithm (algorithm
1) will always terminate and return a set of models, each of
which are functionally equivalent to agent’s model M.

Proof (Sketch). Because of the formulation of the planning
problem Ppo, for a pair of models M; and M, Ppo has a
solution iff M; and M ; have a distinguishing plan outcome
query Qpo. Direct result of this will be that for the refine-
ment in terms of pal tuple v = (p, a, | =precondition) of
two models M, and M, if M; and M ; are not distinguish-
able M;{ M j» then their refinements when adding v will be
distinguishable only if the refinements belong to different
partitions. Same holds for the effects case too, but now
depending on presence of a positive or negative literal in the
state, we might not be able to distinguish when one of the
mode is absent. Also, if we prune away an abstract model
M3 then no possible concretization of Ms will result
into a model consistent with the agent model M. This is
because whenever we get a prunable query, we are discard-
ing only the inconsistent models, thereby ensuring that no
correct model was ever discarded. For the cases when we
don’t get a prunable query, we infer the correct precondition
of the failed action, hence the number of refined palm tuples
always increase as the number of iterations of the algorithm
increase, thereby ensuring the termination of the algorithm
in finite time. And finally, the models leftover at the most
concretized node (after all the palm tuples are refined) are
going to be the set of models which the algorithm could
not discard, hence all of these models are guaranteed to be
functionally equivalent to the agent model. O

Learning Interpretable Models for Black-Box Agents

Algorithm 1

Domain | |P*| | |A] |9] | M| 19 Time/Q

(sec)
gripper 5 3 15 % 2° 1 37 0.14
blocks™ 9 4 [36%2° 1 92 1.73
elevator | 10 | 4 [40«20 [64 | 109 5.91
logistics | 11 6 | 6621 | 64 98 11.62
parking | 18 | 4 [722" | 32 [173 12.01
satellite | 17 | 5 | 85%2™7 [4096 | 127 | 19.53

Table 1: Comparison of the number of queries and average
time per query in our approach vs a naive baseline. |Q|
denotes the number of queries used in our approach, as
opposed to the number of queries | Q| that would be required
in a naive solution (see Sec. 3). |M| denotes the number
of equivalent models that Algorithm 1 would’ve returned
without normalization. Times shown are averages of time
taken per query across 10 runs of the agent interrogation
algorithm.

Full name of IPC domain is *blocks-world.

3 Empirical Evaluation

The approach developed in this paper uses very sparse but
selective information from the agent to infer its mode. Exist-
ing approaches for model learning (see Sec. 1) cannot work
with such information (outcomes of plans but not their inter-
mediate states). However, we can consider a naive querying
method for solving the problem as a baseline: all possible
states using the instantiated predicates can be generated to
be used as initial states, and for each initial state a query can
be formed with a plan containing single action (one such
plan for each action). Based on the agent’s responses, each
action’s preconditions and actions can be inferred. This
method is guaranteed to find the solution but the complexity
of this approach is exponential in the number of predicates.

To test our approach, in each run we created an agent (un-
known to Alg. 1) with one of the 7 IPC domain models.
We then evaluated the performance of Alg. 1 in estimat-
ing that agent’s model using 10 different problems from
that domain. We generate initial states for queries using an
increasing number of objects until a distinguishing query
is found. In all our experiments, such a query was found
using at most 7-8 objects. This number is found to correlate
with the maximum arity of the predicates in the domain.
Hence the number of queries is not affected by the number
of objects as the approach finds the minimum number of
objects needed to distinguish between the abstracted models
and uses it, and providing more objects does not change the
behaviour of the algorithm. This was further validated from
the test runs as the value of |Q| for a domain did not change
across the 10 problems they were tested on.

Table 1 and Fig. 5 illustrate our results. Table 1 shows that
the number of queries asked (|Q|) in our approach is much

200, mmmm Num. of Queries

EEE Time per Query

Lkl

aripper blocks-world elevator logistics parking satellite
IPC Domains

Boe e e
5 N o S
S & o o

3
Time per Query (sec)

Number of Queries

u
=3

~
&

o

Figure 5: Bar chart showing the number of queries and time
per query for the seven IPC domains.

smaller than that needed for the naive method (|Q|). The
number of equivalent models that the algorithm would’ve
returned is unusually high for satellite domain as the case
mentioned in Fig. 4, i.e. when a predicate appeared as a
positive literal in the precondition of an action, but is either
missing or positive in effect of that action, was present 12
times. Even for three other domains, this case caused the
large number of equivalent models. Such large number of
equivalent models affect the running time of the algorithm
adversely.

All the experiments were run on 4.9 GHz Intel Xeon E5-
2680 v4 CPUs with 64 GB RAM running Ubuntu 18.04.
We used FF planner (Hoffmann & Nebel, 2001) to solve the
planning problems.

Also, there is no definite pattern in the number of queries
asked as the order in which queries were asked (depending
of ordering of ~ tuples) was random. So a better query asked
earlier in the interrogation process can lead to a smaller
number of queries asked.

4 Conclusion

We have presented a novel approach for estimating the
model of an autonomous agent by interrogating it. In this
paper we showed that the number of queries required to
estimate the model is dependent only on the number of ac-
tions and predicates, and is independent of the size of the
environment. An advantage of learning models of the form
described in this paper is that they permit assessments of
causality (Halpern, 2016).

Extending this approach to more general types of agents
and environments featuring partial observability and/or non-
determinism is a promising direction for future work.

Although our interface is a set of plans represented as log-
ical statements, other works have explored using natural
language as a way to provide plans as input (Lindsay et al.,
2017). In future, this can be used to extend our work thereby
making the communication more realistic and close to how
a human interrogator might actually interact with an au-
tonomous agent.

Learning Interpretable Models for Black-Box Agents

Acknowledgements

We thank Shashank Rao Marpally and Abhyudaya Srinet
for their help with the implementation. This work was
supported in part by the NSF under grants IIS 1844325 and
IIS 1909370.

References

Aineto, D., Jiménez, S., Onaindia, E., and Ramirez, M.
Model recognition as planning. In Proc. ICAPS, 2019.

Amir, E. and Chang, A. Learning partially observable deter-
ministic action models. Journal of Artificial Intelligence
Research, 33:349-402, 2008.

Amir, E. and Russell, S. Logical filtering. In Proc. IJCAI,
2003.

Bickstrom, C. and Jonsson, P. Bridging the gap between
refinement and heuristics in abstraction. In Proc. IJCAI,
2013.

Bryce, D., Benton, J., and Boldt, M. W. Maintaining evolv-
ing domain models. In Proc. IJCAI, 2016.

Camacho, A. and Mcllraith, S. A. Learning interpretable
models expressed in linear temporal logic. In Proc.
ICAPS, 2019.

Cresswell, S. and Gregory, P. Generalised domain model
acquisition from action traces. In Proc. ICAPS, 2011.

Cresswell, S., McCluskey, T., and West, M. Acquisition of
Object-Centred Domain Models from Planning Examples.
In Proc. ICAPS, 2009.

Fikes, R. E. and Nilsson, N. J. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence, 2(3-4):189-208, 1971.

Fox, M. and Long, D. PDDL2.1: an extension to PDDL
for expressing temporal planning domains. Journal of
Artificial Intelligence Research, 20(1):61-124, 2003.

Giunchiglia, F. and Walsh, T. A theory of abstraction. Arti-
ficial Intelligence, 57(2-3):323-389, 1992.

Halpern, J. Y. Actual Causality. The MIT Press, 2016.
ISBN 0262035022.

Helmert, M., Haslum, P, Hoffmann, J., et al. Flexible
abstraction heuristics for optimal sequential planning. In
Proc. ICAPS, 2017.

Hoffmann, J. and Nebel, B. The FF planning system: Fast
plan generation through heuristic search. Journal of Arti-
ficial Intelligence Research, 14:253-302, 2001.

Khardon, R. and Roth, D. Reasoning with models. Artificial
Intelligence, 87(1-2):187-213, November 1996.

Kucera, J. and Bartdk, R. LOUGA: Learning planning
operators using genetic algorithms. In Yoshida, K. and
Lee, M. (eds.), Knowledge Management and Acquisition
for Intelligent Systems, pp. 124-138, 2018.

Lindsay, A., Read, J., Ferreira, J., Hayton, T., Porteous, J.,
and Gregory, P. Framer: Planning models from natural
language action descriptions. In Proc. ICAPS, 2017.

Ng, J. H. A. and Petrick, R. Incremental learning of planning
actions in model-based reinforcement learning. In Proc.
IJCAI, 2019.

Sacerdoti, E. D. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5(2):115-135, 1974.

Settles, B. Active learning literature survey. Technical Re-
port 1648, University of Wisconsin-Madison Department
of Computer Sciences, 2009.

Srivastava, S., Russell, S., and Pinto, A. Metaphysics of
planning domain descriptions. In Proc. AAAI 2016.

Stern, R. and Juba, B. Efficient, safe, and probably ap-
proximately complete learning of action models. In Proc.
IJCAL 2017.

Yang, Q., Wu, K., and Jiang, Y. Learning action models
from plan examples using weighted max-sat. Artificial
Intelligence, 171(2-3):107-143, February 2007.

