In AAAI 2020 Workshop on Generalization in Planning (GenPlan 2020)
New York City, NY, USA

Learning Generalized Models
by Interrogating Black-Box Autonomous Agents

Pulkit Verma and Sidddharth Srivastava
School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ 85281 USA
{verma.pulkit, siddharths } @asu.edu

Abstract

This paper develops a new approach for estimating a rela-
tional model of a non-stationary black-box autonomous agent
that can plan and act. In this approach, the user may ask an
autonomous agent a series of questions, which the agent an-
swers truthfully. Our main contribution is an algorithm that
generates an interrogation policy in the form of a contingent
sequence of questions to be posed to the agent. Answers to
these questions are used to derive a minimal, functionally in-
distinguishable class of agent models. This approach requires
a minimal query-answering capability from the agent. Em-
pirical evaluation of our approach shows that despite the in-
tractable space of possible models, our approach allows cor-
rect and scalable estimation of relational STRIPS-like agent
models for a class of black-box autonomous agents.

1 Introduction

Growing deployment of autonomous agents leads to a per-
vasive problem: how would we ascertain whether an au-
tonomous agent will be safe, reliable, or useful in a given
situation? This problem becomes particularly challenging
when we consider that most autonomous systems are not de-
signed by their users; their internal software may be unavail-
able or difficult to understand; and they may adapt and learn
from the environment where they are deployed, invalidating
design-stage knowledge of agent models.

Such scenarios feature two properties that limit the ap-
plicability of existing approaches for model learning: they
feature (a) non-stationary agents and environments, which
evolve with the situation and do not present sufficient obser-
vational data for pure statistical learning and (b) black-box
autonomous agents that may not be aware of a user’s pre-
ferred model representation.

This paper presents a new approach for estimating an
interpretable, relational model of a black-box autonomous
agent that can plan and act, by interrogating it. Our ap-
proach is inspired by the interview process that one typi-
cally uses to determine whether a human would be qualified
for a given task. Consider a situation where Hari(ette) (H)
wants their autonomous robot (A) to clean up their lab, but
s/he is unsure whether it is up to the task and wishes to es-
timate A’s internal model in an interpretable representation
that s/he is comfortable with (e.g., a relational STRIPS-like
language (Fikes and Nilsson 1971; Fox and Long 2003)).
Thus, H may ask A a series of questions, e.g., “What do
you think will happen if you picked up bottle 1, bottle 2 and

Black-box
Autonomous Agent

A

Agent Interrogation
Algorithm

!

M‘A Agent Model

Figure 1: The agent interrogation framework

bottle 3 in succession?” Naive approaches to the problem
would require too many questions and place strong require-
ments on A’s knowledge of H’s preferred representations'.
If this problem could be solved efficiently, lay persons would
be able to efficiently determine the applicability of a wide
class of adaptive, non-stationary black-box agents by inter-
rogating them, thus improving the overall usability as well
as field-debuggability of autonomous systems.

We use a rudimentary class of queries that makes our ap-
proach applicable on a broad class of agent implementa-
tions including simulator-based and analytical model-based
agents: we use plan outcome queries that ask A what, ac-
cording to it, would be the outcome of executing the longest
executable prefix of a hypothetical plan 7 on a hypotheti-
cal initial state s. These are the only queries that A needs to
support for our approach to be applicable. Fig. 1 illustrates
the overall paradigm. Our approach generates a sequence of
queries (Q) depending on the agent’s responses (R) during
the query process; the result of the overall interrogation pro-
cess is a complete model of .A. In order to generate queries,
we present a top-down process that eliminates large classes
of agent-inconsistent models by computing queries that dis-
criminate between pairs of abstract models. When an ab-
stract model’s answer to a query differs from the agent an-
swer, we effectively eliminate the the entire set of possible
concrete models that are refinements of this abstract model.

In developing the first steps towards this paradigm we as-

'Just 2 actions and 5 grounded propositions would yield
92%5 ~ 10° possible STRIPS models — each proposition could
be absent, positive or negative in the precondition and effects of
each action. A query strategy that inquires about each occurrence
would be not only unscalable but also inapplicable on simulator-
based agents that do not know their actions’ preconditions and ef-
fects.

sume that the user wishes to estimate .A’s internal model as
a STRIPS-like relational model with conjunctive precondi-
tions, add lists, and delete lists (and that the agent’s model
is expressible as such), although our framework can be ex-
tended to handle other types of formal domain representa-
tions. Further, we assume that the agent has functional defi-
nitions for the relations and actions in the user’s vocabulary
(these definitions can be programmed as Boolean functions
over the state), and that it always answers truthfully.
Related Work A number of researchers have explored the
problem of learning agent models from observations of its
behavior (Yang, Wu, and Jiang 2007; Cresswell, McCluskey,
and West 2009; Cresswell and Gregory 2011; Stern and Juba
2017). To the best of our knowledge, ours is the first ap-
proach to address the problem of generating query strategies
for inferring relational models of non-stationary black-box
agents. Camacho and Mcllraith [2019] recently presented an
approach for learning LTL models from an agent’s observed
state trajectories using an Oracle with knowledge of the tar-
get LTL representation. The oracle could also generate coun-
terexamples when the estimated model differed from the true
model. Amir and Chang [2008] use logical filtering (Amir
and Russell 2003) to learn partially observable action mod-
els from action and observation traces. Aineto et al. [2019]
present an approach for reducing model recognition to plan-
ning. Their approach is shown to work even for partially
observed agent behaviors. LOCM (Cresswell, McCluskey,
and West 2009) and LOCM?2 (Cresswell and Gregory 2011)
present another class of algorithms that use finite-state ma-
chines to create action models using plan traces. LOUGA
(Kucera and Bartdk 2018) uses a combination of genetic
algorithm and an ad-hoc method to learn planning opera-
tors using plan traces. Khardon and Roth [1996] address the
problem of making model-based inference faster given a set
of queries, under the assumption that a static set of models
represents the true knowledge base. While these prior ap-
proaches address the problem of learning models from train-
ing data, they do not address the problem of estimating agent
models in situations where the agent or the environment are
not stationary —i.e., where the agent may learn, where it may
be provided with system updates, or where the environment
changes such that the distribution that the training data came
from is no longer representative of the deployment.

In contrast, our approach is not limited to stationary
settings since it acquires current information using auto-
generated queries. Moreover, our approach does not require
A to provide intermediate states in an execution, or to have
an Oracle that could provide counterexamples or assess the
correctness of the current model estimate. In contrast to ap-
proaches for white-box model-maintenance (Bryce, Benton,
and Boldt 2016), our approach does not require A to know
about H’s preferred representation language.

The field of active learning (Settles 2009) addresses the
related problem of selecting which data-labels to acquire for
learning single-step decision-making models using statisti-
cal measures of information. In contrast, our approach uses
a hierarchical abstraction to select questions to ask while
inferring a multi-step decision-making (planning) model.
Information-theoretic metrics could also be used in our ap-

proach when such information is available.

The rest of this paper is organized as follows. The next
section presents some background terminology used in this
paper and explains our approach. Section 3 discusses the
empirical evaluation of our approach; and Section 4 high-
lights our main conclusions and directions for future work.

2 The Agent-Interrogation Task

We assume that 7 needs to estimate .4’s model using a
STRIPS-like planning model (Fikes and Nilsson 1971) rep-
resented as a pair M = (P,A), where P = {p1,...,pn}
is a finite set of state variables, each with a finite domain
dom(p;) associated with it; A = {aq,...,ax} is a finite
set of actions, each represented as a tuple (pre(a;), eff(a;)),
where pre(a;) and eff(a;) are the partial assignments of
the state variables. While we explain the salient points of
this representation and its grounded, propositional form as
needed, we refer the reader to prior work for formal descrip-
tions (Helmert 2009).

The only information # has is the set of actions A that .4
can perform. As noted in the Introduction, .4 has functional
definitions of the predicates in H’s vocabulary, and therefore
there is sufficient information for a dialog between H and A
about the outcomes of hypothetical action sequences.

We define the overall problem of agent interrogation as
follows. Given a class of queries and an agent with an un-
known model who can answer these queries, determine the
model of the agent. More precisely, an agent interrogation
task is defined as a tuple (M*, Q) where M is the true
model of the agent (unknown to the interrogator) being in-
terrogated, and Q is the class of queries that can be posed
to the agent by the interrogator. Let © be the set of possi-
ble answers to queries. Thus, strings §* € O* denote the
information received by H at any point in the query process.
Solutions to the agent interrogation task take the form of a
query policy 6* — Q U {Stop} that maps sequences of an-
swers to the next query that the interrogator should ask. The
process stops with the Stop query. In other words, ¥ answers
0 € O, all valid query policies map all sequences z6 to Stop
whenever x € © is mapped to Stop.

Although our approach is developed for relational repre-
sentations, we will utilize a propositional representation for
ease of exposition in most of this paper; we note specific
salient points about relational representations when they are
not clear from context. We evaluate our approach on rela-
tional models (Sec. 3). In the propositional form, we assume
that the common vocabulary consists of a grounded set of
actions A and a set of propositions P.

Components of Agent Models In order to formulate our
solution approach, we consider a model M to be com-
prised of components called palm tuples of the form A\ =
(p,a,l, m) where p is a proposition from the common vo-
cabulary of propositions PP; a is a grounded action from
the set of grounded actions A%, I € {pre, eff} and m €
{+, —,0}. For convenience, we use subscripts p,a,l or m
to denote the corresponding component in a palm tuple. The
presence of a palm tuple X in a model denotes the fact that
in that model, the proposition A\, appears in an action A, at

Detailed in (b)

(C))

prune B, C

y, selected by
arbitrary <p,a,/>
ordering

" This part
1of lattice not !
. traversed

Figure 2: (a) A subset lattice created using pal-tuples; (b) Detailed view of a portion of lattice (marked in (a)) illustrating how partitions are

created and pruned.

a location A; as a true (false) literal when sign A,, is posi-
tive (negative), and is absent when \,,, = (). This allows us
to define the set-minus operation M \ A on this model as
removing the palm-tuple A from the model.

While applying this approach to relational models, we
use action arguments to define the set of atoms that
can take the place of p in palm tuples. E.g., palm tu-
ples involving an action a(x,y) will be of the form
(p(vari,vars),a(z,y),l,m), where var; and vary take
unequal values from the action arguments {z, y}, and [and
m have the same domains as in the propositional case above.
Since this notation can be unnecessarily tedious, we use the
more succinct propositional representation given above for
notational convenience and implement the relational version
in all our experiments. Also note here that for the example
given above, H can form two variations of the predicate p;
p(z,y) and p(y, z) as it has no knowledge of the semantics
of the domain. We use |P*| to represent the number of all
such predicates and it depends on |P| and maximum arities
of largest predicate and action.

We consider two palm tuples Ay = (p1,a1,l1,m1) and
A2 = (p2,asa,la, my) to be variants of each other (A\; ~
Ag) iff they differ only on m, ie. A\ ~ Ao & (Alp =
)\Qp) AN ()\1@ =)\ga) A\ ()‘11 =)‘21) A\ ()\1m #* /\Qm). Hence
mode assignments to a pal tuple v = (p, a,!) can result in
3 palm variants v* = (p,a,l,+), v~ = (p,a,l,—), and
’70 = <p7a’ l7 ®>
Model Abstraction We are now ready to define the no-
tion of abstractions used in our solution approach. Sev-
eral approaches have explored the use of abstraction in
planning (Sacerdoti 1974; Giunchiglia and Walsh 1992;
Helmert et al. 2017; Béckstrom and Jonsson 2013; Srivas-
tava, Russell, and Pinto 2016). The following definition ex-
tends the concept of predicate and propositional domain ab-
stractions (Srivastava, Russell, and Pinto 2016) to allow for
the projection of a single A tuple.

Definition 1. Let I/ be the set of all possible models. The
abstraction of a model M, on the basis of a palm tuple J, is
given by fy : M — (M\ X), where f) : U — U. Aset X
is said to be a model abstraction of a set of models M with
respect to a A-tuple, if X = {fy(m) : m € M}.

We also use the notation M’) M to represent the
situation where f)(M) = M/’'. We use this abstraction
framework to define a subset-lattice over abstract models
(Fig.2(a)). Note that at each node we can have all possi-
ble variants of a palm tuple. For example the topmost node
in Fig. 2(b), we can have models corresponding to v;", 7,
and fylm. Each node in the lattice represents a collection of
possible abstract models at the same level of abstraction. As
we move up in the lattice, we get more abstracted version of
the models and we get more concretized models as we move
down.

Definition 2. A model lattice L is a 5-tuple L =
(N,E,T,¢xn,lE), where N is a set of lattice nodes, T" is

the set of all pal tuples (p,a,l), {y : N — 22" is a node
label function where A = I' x {+, —,0}, E is the set of
lattice edges, and /g : E — T is a function mapping edges
to edge labels such that for each edge n; — nj, {n(n;) =

{AU{Y*}HA € tn(na),y = bp(ni = ny) k € {+,—,0}}.

The supremum T of the lattice £ is the most abstracted
node of the lattice, whereas the infimum _L is the most con-
cretized node. Also, a node n € N in this lattice £ can be
uniquely identified as the sequence of pal tuples that label
edges leading to it from the supremum. As shown in Fig.
2(b), even though theoretically £ : n 22A, only one of
the sets is stored at each node as the others are pruned out
based on Q. Also, in these model lattices every node has
an edge going out of it corresponding to each pal tuple that
is not present in the paths leading to it from the most ab-
stracted node. At any stage during the interrogation, nodes in
such a lattice are used to represent the set of models that are

possible given the agent’s responses up to that point. At ev-
ery step, our query-generation algorithm will create queries
that help us determine the next descending edge to take from
each lattice node.

Form of Agent Queries As discussed earlier, we pose
queries to the agent and based on the responses we try to in-
fer the agent’s model. We express queries as functions map-
ping models to answers. More precisely, let U/ be the set of
possible models and R a set of possible responses. A query
Qs afunction Q: U — R.

In this paper we utilize only one class of queries: plan
outcome queries, which are parameterized by a state sz and
aplan 7.

Plan outcome queries (Qpo) ask the agent the length of
the longest prefix of the plan 7 that can be executed success-
fully when starting in the state sz € 2%, and the resulting
final state. E.g., “Given that the bottles b7 and b2 with labels
/1 and 12 respectively are kept on the floor and your hand
is empty, what would happen if you executed pickup(bl),
pickup(b2), place(bl, s1), place(b2, s1)?

A response to these queries can be of the form “I can ex-
ecute the plan till step £ and at the end of it b/ is on shelf s/
and b2 is on shelf s/”. Formally, the response R po for plan
outcome queries is a tuple (¢, sx), where ¢ is the number
of steps for which the plan 7 was successfully able to run,
and s € 2F is the final state of the agent after executing
¢ steps of the plan. If the plan 7 is not executable accord-
ing to the agent model M+ then ¢ < len(r), otherwise if
7 is executable then ¢ = len(r). The final state sz € 2F
such that MA = 7[0 : £](sz) = s, i.e. starting with a state
s7, M successfully executed first £ steps of plan 7. Thus,
Opo : U — N x 2F where N is the set of natural numbers.

Not all queries are useful, as some of them might not in-
crease our knowledge of the agent model at all. Hence we
define some properties associated with each query to as-
certain its usability. A query is useful only if it can distin-
guish between two models. More precisely, a query Q is
said to distinguish a pair of models M; and M, denoted
as M;] M, iff Q(M,) # Q(M;).

Given a pair of abstract models, we wish to determine
whether one of them can be pruned — i.e., whether there’s
a query on which its answer is inconsistent with the agent’s
answer. Since this is computationally expensive to determine
and we wish to reduce the number of queries made to the
agent, we first evaluate whether the two models can be dis-
tinguished by any query, independent of consistency with
the agent. If the models are not distinguishable, it doesn’t
make sense to try to prune one of them under the given query
class. Formally,

Two models M; and M are said to be distinguishable,
denoted as M;| M, iff there exists a query that can distin-
guish between them, i.e. 3Q M1 eM j

In determining prunability, we need to consider the fact
that the agent’s response may be at a different level of ab-
straction if the given pair of models is abstract. When com-
paring the responses of two models at different levels of
abstraction, we must also evaluate if the response of ab-
stracted model M’ is consistent with that of the agent,

(@) M*’s pick(?z) action (unknown to #)
(handempty) , — (in-hand (?x)),
(on—-floor (?x)) (— (handempty)),

(—(on-floor (?x)))

(b) M1 ’s pick(?x) action
(handempty) , —
(on—-floor (?x))

(= (handempty)),
(—(on-floor (?x)))

(c) M2’s pick(?z) action
[(on—-floor (?x)) —

(- (on-floor (?x)))]

(d) M3’s pick(?z) action
[(on—floor (?x)) = 0]

Figure 3: pick actions of the agent model M and three ab-
stracted models M1, My, and M3. Here X — Y means that
X 1is the precondition of an action and Y is the effect.

ie. Q(MA) = Q(M’). For plan outcome queries, con-
sider that Qpo (M) = (¢, (p1, ..., pr)) and Qpo(M') =
(¢, (p},...,p})). Now we can say that Qpo(M*A) |
Qpo(MNiff ({ =), j < kandVi € {1,...,5} Ap; =

Ap;.-
1

Definition 3. Given an agent-interrogation task (M%, Q),
two models M; and M; are prunable denoted as M; ()M,

iff 30 € Q : M;°M; A (QMA) = Q(M;) A
8%;‘)) QM) V (QIMA) I Q(M;) A QIMA) =

2.1 Solving the Interrogation Task

Our approach iteratively generate pairs of abstract models
and eliminates one of them by asking A queries and compar-
ing its answer with that generated using the abstract models.

Example 1. Consider the case of the chemistry lab robot
discussed in the Introduction. Assume that # is considering
two abstract models M and M having only the predicates
handempty, on-floor(?x) and the agent’s model is M
(Fig. 3). ‘H can ask the agent what will happen if A picks
up bottle b2 after bottle bl. The agent would respond that it
could execute the plan only till length 1, and the state at the
time of this failure was (on- floor(b2)) A (in-hand(bl)) A
(=(handempty)) A (—(on- floor(bl))).

Algorithm 1 shows our overall algorithm for interrogating
autonomous agents. It takes the agent A, the set of propo-
sitions [P, and set of all actions A as input and gives the
set of functionally equivalent estimated models represented
by poss_models as output. We initialize poss_models as
empty set (line 1) representing that we are starting at the
most abstract node in model lattice.

In each iteration of the main loop (line 2), we keep track
of the current node in the lattice. We pick a pal tuple ~y corre-
sponding to one of the descending edges in the lattice from
n given by some input ordering of I'. The correctness of the
algorithm does not depend on this ordering. We then gener-
ate all the new sets of models at the current node represented
by the new_models (line 3). We also initialize an empty set
at each lattice node to store the pruned models (line 4).

Algorithm 1: Agent Interrogation Algorithm

Input: A, AP
Output: poss_models
1 poss_models = {{0}};
2 for ~y in some input pal ordering I" do

3 new_models < poss_models x {7y, 7y, 7}

4 pruned_models= {0};

5 for each M®®® in poss_models do
o | (Ml Mg M) -

{Mabs U ’Y+,Mabs U ,_Y—’Mabs U ,Y(Z)};
for each pair {M;, M} in {MF, M5, M2} do

8 Q « generate_query(M;, M;);

9 M prune «filter_models(Q, M, M, My);
10 pruned_models<— pruned_modelsUM p,une
1 end
12 end
13 if pruned_models is () then
14 update_pal_ ordering(I');

15 continue;

16 end

17 new_models < new_models \ pruned_models;
18 poss_models<— poss_models U new_models ;
19 end

The inner loop (line 5) iterates over the set of all possible
models poss_models. Each abstract model represented by
M3 is then refined with the pal tuple ~y giving three differ-
ent models and form pairs from these models and iterate over
these pairs (line 6 and 7). Here M represents the abstract

models equivalent to M* U {y™}, where m € {+, —,0}.

For each pair, we generate a query Q using gener-
ate_query() that can distinguish between the models in that
pair (line 8). We then call filter_models() which poses the
query Q to the agent and the two models. Based on their
responses, we prune the models whose responses were not
consistent with that of the agent (line 9). Then we up-
date the estimated set of possible models represented by
poss_models (line 17 and 18).

If we are unable to prune any models at a node (line 13),
we update the order in which pal tuples are considered for
refinement (line 14). We continue this process until we reach
the most concretized node of the lattice (meaning all possi-
ble model components A € A are refined). The remaining
set of models represent the estimated set of models for the
agent. This algorithm would require O(|A| x |P|) queries.
However, our empirical studies show that we never generate
so many queries. Section 2.2 describes the generate_query()
(line 8) component of the algorithm, Section 2.3 descibes the
filter_models() (line 9) component, and Section 2.4 describes
the update_pal_ordering() component (line 14).

2.2 Query Generation

The query generation process corresponds to gener-
ate_query() module in algorithm 1 which takes 2 models
M, and M as input and generates a query Q that can dis-
tinguish them, and if possible, satisfy prunability condition
too.

Plan outcome queries can distinguish between models dif-
fering in either preconditions or effects of some action. We
reduce the problem of creating plan outcome queries to a
planning problem. The idea is to maintain a separate copy
PMi and PMi of all the propositions P, and formulate each
precondition and effect of an action as a formula of predi-
cates in both the copies of the propositions.

Let the planning problem Ppp = (MO s7 sg),
where MP© is a model with propositions PFC =
PpMi A PMi A py, and actions A where for each
action a € A, pre(a) = pre(a™) v pre(a™i)
and eff(a) = (when(pre(a™) A pre(a™i))(eff(a™) A
eff(a™)) (when((pre(a™) A—pre(a™i)) v (—pre(a™) A
pre(a™))) (p,)), sz = 37 A sé/lj is the initial state where

59" and sJIMj are different copies of all predicates in the ini-

tial state, and sg is the goal state and it is expressed as p.,.

With this formulation whenever we have at least one ac-
tion in both the models which has different effects in both
of them, the goal will be reached. For example, consider
the models M and M; mentioned in Fig. 3. On apply-
ing the pick(bl) action from the state where the action can
be applied in both the models, one of them will lead to
in-hand(bl) being true and the other will not. Hence start-
ing with an initial state sz = on-floor(bl) A handempty,
the plan to reach the goal will be pick(b1).

Also, whenever we have an action a which cannot be ap-
plied in the same state s; in both the models, the planner
will generate a plan to take the agent from the initial state to
state s4, and append action a to that plan. This new plan will
be the solution to the planning problem Ppo. For example,
consider the models M, and M5 mentioned in Fig. 3. In a
state where on- floor(bl) is true and handempty is false,
we can apply pick(bl) in M5 but not in M. Hence for an
initial state sz = on-floor(bl) A —handempty, the plan
to reach the goal will be pick(b1). The following theorem
formalizes these notions.

Theorem 1. Given a pair of models M; and M, the plan-
ning problem Ppo has a solution iff M, and M, have a
distinguishing plan outcome query Qpo.

Proof (Sketch). Qpo comprises of an initial state sz and
plan 7. The initial state sz in Qpo and Ppg is same. Start-
ing with this initial state, an action becomes a part of the plan
7 only when it can be applied in any one or both of the mod-
els M; and M;. So two cases arise here, if the action can
be executed in both the models, the effect of both the actions
is applied to the state and next action is searched. Otherwise
if the action is applicable only in one of the models, but not
the other, the effect of the action is a dummy proposition p
which is also the goal. So as soon an action is found that is
possible in one of the models but not the other, or if it gives
different resulting states in both the models, the resulting
plan becomes the plan needed by query Qpo. Hence if the
planning problem Ppo gives a solution plan 7, then there
exists a query Qpo that consists of sz and 7 as input.

Also, as described previously, whenever there exists a dis-
tinguishing plan-outcome query, the starting state sz is part
of Qpo, and the way we generate the Ppo problem ensures
we will get a plan 7 as the solution. O

2.3 Filtering Possible Models

This section describes the filter_models() module in algo-
rithm 1 which takes as input the agent model M+, the two
abstract models being compared M; and M ;, and the query
Q (generated by the generate_query() module explained in
section 2.2), and returns the subset M ,,ne Which is not
consistent with M4,

Firstly, the algorithm asks the query Q to both the models
M; and M and the agent M, Based on the responses of
all three, it determines if the two models are prunable, i.e.
M; () M. As mentioned in Def. 3, checking for prunability
involves checking if responses to the query Q by one of the
models M; or M is consistent with that of the agent or not.

If the models are prunable, let the model not consistent
with the agent be M’ where M' € {M;, M;}. Now re-
call that a model is a set of palm tuples. As shown in Fig.
2, based on response to a query, if a model is found to be
inconsistent for the first time at a node n in the lattice, with
an incoming edge of label ~y, any model with same mode of
~ as M’ will also be inconsistent. This is because a palm
tuple uniquely identifies the mode in which a predicate will
appear in an action’s location which can be precondition or
effect. And since this tuple is inconsistent with the agent,
any model containing this will also contain the same mode
of predicate in that action’s precondition or effect. This idea
paves way for the concept of partitions which is discussed
below.

Given lattice nodes n; and n;, the edge n; — n; labeled
v, and the set A of palm tuples present at the parent node
n;, a partition of node n; is the set of disjoint subsets AU
{yT}, AU{y~}, and AU {~?}. So depending on the model
M’ which is inconsistent with agent model M+, we can
prune out the whole partition containing M’. This partition
is returned by filter_models() module as M, yne -

2.4 Updating pal ordering I'

Models may not be prunable if the query is not executable
by A and none of the model’s query responses are consistent
with that of the agent. For eg, consider two abstract mod-
els My and M3 being considered by the human interroga-
tor H (Fig. 3). At this level of abstraction, # does not have
knowledge of predicate handempty, hence it will generate a
plan outcome query with initial state on- floor(b1) and plan
pick(bl) to distinguish between My and M. But this can-
not be executed by agent A as the precondition handempty
is not satisfied. In such cases, we cannot discard any parti-
tions. Hence if no prunable query is possible, i.e. the palm
tuple set A being considered is last in poss_models, we up-
date the pal ordering. Recall that in response to the plan out-
come query we get the failed action apq;; = w[f] and the
final state sr. Let us assume that the query was executable
on M;, but not on M. Now assuming M; is an abstracted
version of M+, let the state it reaches after executing first
¢ steps of the plan be 5. Now we can infer that one of
the literal present in sx \ Sx (represented as {l1,...,lx})
is causing the action apg;; to fail. We now generate a new
query with sz = Sx and keeping a subset of {—ly ...l }.
With this sz as initial state, the agent .4 should be able to

execute the plan 7 = apg;. In next step we change the
initial state sz to Sz A l; and remove [; from the subset
we found earlier. If A still executes @ = apqq, then [
was not the literal responsible for the failure of ap,;; and
we change sz to Sz A lx A lx_1, otherwise we can infer
that [was indeed one of the literals responsible for fail-
ure of apgi;, and we change sz to sz A =l A lp—1. We do
this k times to determine the literals responsible for failure
of action ap,;. For each of such literals causing the fail-
ure, we get their correct palm tuples. For eg. if we inferred
that on-table(?xz) was not present in the state and hence
was causing the action pick(?x) to fail, we get the correct
palm tuple as (on-table(?z), pick(?x), precondition, +).
We need not refine in terms of the corresponding pal tuple
(on-table(?x), pick(?z), precondition) in future, so we re-
move it from the pal ordering I'.

2.5 Correctness of Agent Interrogation Algorithm

In this section we prove that the set of estimated models re-
turned by the agent interrogation algorithm are correct. A
good starting point will be to verify the correctness of the
queries. In the following theorem we show that if we pick the
models from different partitions to generate the query (Step
7 of the algorithm 1), then we will always get distinguishing
queries. We break this into 2 parts, first we consider the case
where the location [in the pal tuple is precondition, then we
discuss about the pal tuples with effect as the location.

Theorem 2. For the refinement in terms of pal tuple v =
(p,a,l = precondition) of two models M; and M, if
M; and M, are not distinguishable MY M;, then their
refinements when adding v will be distinguishable only if
the refinements belong to different partitions i.e., (M; U
™) L(M; U~™2) if my # ma and (M; U~y™) 1 (M; U

y™2) if my = mag, where my, mg € {+, —,0}.

Proof (Sketch). Let us consider 2 different cases;
First case when m; = ma, i.e., both (M; U ™) and
(M, U~™2) are in the same partition. Let us assume that
a query Q with plan m¢ exists that can distinguish between
the refined models (M; U~™") and (M;U~™2). Now since
before refinement M;{ M, and the only change we have
made in the models is in action a, it should be part of the
plan 7. More specifically it should be the last action in the
plan as after applying this action, both models will result in
different states. But the change being made in both M; and
M is same, hence this action a cannot distinguish between
the two models, so we reach a contradiction with our initial
assumption, hence (M; U~y™)Y (M; U~y™2) if mq = ma.
For the second case when m; # mg ie., (M; U~y™)
and (M, U ~™?) are in different partitions, we can safely
assume that we have at least one action a which is part
of ~ that can distinguish between the two models. When
l = precondition, we can generate a state sz where this
action is applicable in one model but not in another. More
specifically, if {m1,m2} = {+,—}, we can generate an
initial state sz with literal p or —p, in both the cases, only
one of the models will be able to execute the plan 7. If
{m1,ma} = {+,0}, we can generate an initial state sz
with literal —p, and hence only the model with m = ¢ will

(a) My’s put-on-shel f(?x, 7y) action

N = (same-label(?x, 7y), put-on-shel f (?x, 7y), eff,0)

(in-hand (?x)), — (not (in-hand (?x)),

(same—label (?x,?y)) (handempty) ,
(on—-shelf (?x, ?y))

(b) M3’s put-on-shel f(?x, 7y) action

AT = (same-label(?x, 7y), put-on-shel f (7, 7y), eff,+)
(in-hand (?x)), — (not (in-hand (?x))),
(same—label (?x,?y)) (handempty) ,
(on—-shelf (?x,7?y)),
(same—label (?x,?y))

Figure 4: Two model variants that are functionally equivalent

be able to execute the plan 7 to completion. And finally if
{m1,ma} = {—, 0}, we can generate an initial state sz with
literal p, and hence only the model with m = () will be able
to execute the plan 7 to completion. O

We cannot use the exact same argument when refinement
is done for the effects because we can have models with dif-
ferent effects that are functionally equivalent. An intuitive
example of this will be a pair of models where in one of the
model the same literal appears in both the preconditions and
effects, whereas in the other model the same literal appears
only in the precondition.

For example, consider the chemistry lab robot that cross-
checks for the labels of the bottles when placing the chem-
ical bottles in correct shelves. Assume we have two mod-
els My and M, with the two versions of the action
put-on-shel f (72, ?b) as shown in Fig. 4. In this case, we
cannot generate an initial state sz that can lead to plan that
can distinguish between the models with these two different
refinements. In simpler terms, the planning problem Ppo
discussed in Theorem 1 will not give a solution in this case.

Theorem 3. For the refinement in terms of pal tuple v =
(p, a, | = effect, m) of two models M, and M;, if M; and
M are not distinguishable M;{ M, then their refinements
when adding palm tuple A will be distinguishable only if the
refinements belong to separate partitions except when one
of the partition corresponds to tuple v? and ' = (p,a,l=
precondition,m = {4+, —}) € M; N M,.

Proof (Sketch). Let us consider 2 different cases; First case
when my = ma, i.e., both (M; UA"*) and (M; UA"?) are
in the same partition. Let us assume that a query Q with plan
mo exists that can distinguish between the refined models
(M;U~™1) and (M, U~y™2). Now since before refinement
MY M and the only change we have made in the models is
in action a, it should be part of the plan 7. More specifically
it should be the last action in the plan as this action cannot be
applied in one of the models. But the change being made in
both M, and M is same, hence this action a cannot distin-
guish between the two models, so we reach a contradiction
with our initial assumption, hence (M;Uy™1) (M ;Uy™2)
if mi = ma.

For the second case when my # ms ie., (M; U~™)
and (M; U ~y™2) are in different partitions, if we con-
sider only the cases where the following condition holds
for two palm tuple variants being considered: {(p,a,l =

precondition, my) € M;NM;}N{(p, a,l = effect,ms) €
M; N M;} = mq # mg; then we can safely assume that
we have at least one action a which is part of y that can dis-
tinguish between the two models. When [= effect, we can
generate a state sz where this action is applicable, then ac-
cording to Theorem 1, we can get always get a plan 7 that
will distinguish between the two models. O

The theorems given above prove that the way we pick
models to generate a query gives us distinguishing queries
in almost all cases. And for the cases it does not generate a
distinguishing query, we do not prune any model. We now
prove that the algorithm prunes away a model only when it
is inconsistent with the responses given by the agent. Here
we are assuming that the agent has deterministic actions, so
we can safely infer that an inconsistent answer will always
be inconsistent.

Theorem 4. If we prune away an abstract model M®%*_ then
no possible concretization of M will result into a model
consistent with the agent model M.

Proof (Sketch). At each node in the lattice, we always
prune away some of the models, this pruning happens in one
of the two possible ways:

First, when the distinguishing query between two mod-
els (which are variants of each other) is executed success-
fully by the agent A, we discard a model that is not consis-
tent with the agent. We discard a model only when there is
a proposition in the abstracted version of the final state of
the agent that is not present in the final state of the model.
So for any concretized version of the model, the number of
states reachable will never increase, so any concretized ver-
sion of that model cannot make those propositions (which
were false when we initially discarded) true, so it is never
possible for a concretized version of a discarded model to
be always consistent with the agent model.

Second case is easier to deal here. Whenever we
are not able to generate a plan that is fully exe-
cutable on the agent A, we get new refinement tuples
(PFail, @Fait, ! = precondition, mpg;) (inferred from
update_pal_ordering() module). This is akin to the agent
telling us indirectly that this is the correct form of this palm
tuple, hence we can discard other variants of this tuple with
full surety. O

With the guarantee that we are not pruning away any cor-
rect possible model, we now move on to prove that the agent
interrogation algorithm will terminate, hence giving a solu-
tion always.

Theorem 5. The Agent Interrogation Algorithm mentioned
in algorithm 1 will always terminate.

Proof (Sketch). At each step of the algorithm, when we
consider a refinement in terms of v tuples, we are left with
one or more variant of the ~y tuple. This ensures that we never
have to refine models more than once at a single level in
the lattice. We are assuming level in our subset lattice, to be
the number of refined ~ tuples. Since we refine at least one
~ tuple in every iteration of the algorithm, the algorithm is
bound to terminate as the number of ~y tuples is finite for a

Algorithm 1

Domain | |P*| | [A] | [M]| |9 19| Time/Q
(sec)

gripper 5 91° 15 % 2° 37 0.14

blocks® | 9 9% | 36x2° | 92 1.73

logistics | 11 9% 1 66«2 | 98 11.62
parking | 18 977 | 72x28 [173 | 1201
satellite | 17 9% | 85x27 | 127 19.53
stacks® 10 | 12 [90 [1202 | 203 | 11.28

3
4
elevator | 10 4 9% [40%2™ | 109 591
6
4
5

Table 1: Comparison of the number of queries and average
time per query in our approach vs a naive baseline. \Q| de-
notes the number of queries used in our approach, as op-
posed to the number of queries |Q)| that would be required
in a naive solution having | M| possible models to start with
(see Sec.3. Times shown are averages of time taken per
query across 10 runs of the agent interrogation algorithm.

Full name of IPC domain is *blocks-world, $0penstacks.

finite number of propositions and actions under considera-
tion. O

In the last theorem we proved that agent interrogation al-
gorithm will always give us a solution, we now prove that
the solution given by the algorithm is correct.

Theorem 6. As part of its solution, Agent Interrogation al-
gorithm always gives a set of models, each of which are
functionally equivalent to agent’s model M,

Proof (Sketch). As a solution to the agent interrogation
algorithm, we might get multiple possible models each of
which are functionally equivalent. Theorem 5 sets up an in-
variant for the agent interrogation algorithm that is the num-
ber of refined palm tuples increase as the number of iter-
ations of the algorithm increase. This property when com-
bined with theorem 4 ensures that at each step only the in-
correct models are discarded. So the models leftover at the
most concretized node after all the palm tuples are refined
are going to be the set of models which the algorithm could
not discard, hence all of these models are guaranteed to be
functionally equivalent to the agent model. O

3 Empirical Evaluation

The approach developed in this paper uses very sparse but
selective information from the agent to infer its mode. Exist-
ing approaches for model learning (see Sec. 1) cannot work
with such information (outcomes of plans but not their inter-
mediate states). However, we can consider a naive method
for solving the problem as a baseline: all possible models
can be generated and then their answers to queries are com-
pared to agent’s answers. This method is guaranteed to find
the solution but the complexity of this approach is exponen-
tial in the number of predicates.

To test our approach, in each run we created an agent (un-
known to Alg. 1) with one of the 7 IPC domain models. This
agent supports plan outcome queries. We then evaluated the
performance of Alg. 1 in estimating that agent’s model using
10 different problems from that domain. We generate initial

2000 mmm Num. of Queries

175, EEE Time per Query

100
75
50
25 .
0 gripper blocks-world elevator logistics parking

IPC Domains

Number of Queries

17.5
150 @
)
125
o
S
100 &
e
o
75 2
o
£
50 =
25
0.0

satellite openstacks |

Figure 5: Bar chart showing the number of queries and time
per query for the seven IPC domains.

states for queries using an increasing number of objects until
a distinguishing query is found. In all our experiments, such
a query was found using at most 7-8 objects. This number is
found to correlate with the maximum arity of the predicates
in the domain. Hence the number of queries is not affected
by the number of objects as the approach finds the mini-
mum number of objects needed to distinguish between the
abstracted models and uses it, and providing more objects
does not change the behaviour of the algorithm. This was

further validated from the test runs as the value of |Q| for
a domain did not change across the 10 problems they were
tested on. Also, the number of expected models was always
one as the corner case shown in Fig. 4 was not present in
any of the 7 domains. All the experiments were run on a 4.9
GHz Ubuntu machine with 64 GB RAM.

Table 1 and Fig. 5 illustrate our results. Table 1 shows that
the number of queries asked (| Q|) in our approach is much
smaller than that needed for the naive method (| Q).

Also, there is no definite pattern in the number of queries
asked as the order in which queries were asked (depending
of ordering of ~y tuples) was random. So a better query asked
earlier in the interrogation process can lead to a smaller
number of queries asked.

4 Conclusion

We have presented a novel approach for estimating the
model of an autonomous agent by interrogating it. In this
paper we showed that the number of queries required to es-
timate the model is dependent only on the number of actions
and predicates, and is independent of the size of the environ-
ment.

Extending this approach to more general types of agents
and environments featuring partial observability and/or non-
determinism is a promising direction for future work.

Although our interface is a set of plans represented as
logical statements, other works have explored using natu-
ral language as a way to provide plans as input (Lindsay
et al. 2017). In future, this can be used to extend our work
thereby making the communication more realistic and close
to how a human interrogator might actually interact with an
autonomous agent.

Acknowledgements

We thank Abhyudaya Srinet for his help with the implemen-
tation. This work was supported in part by the NSF under
grants IIS 1844325 and IIS 1909370.

References

Aineto, D.; Jiménez, S.; Onaindia, E.; and Ramirez, M.
2019. Model recognition as planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 29, 13-21.

Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349-402.

Amir, E., and Russell, S. 2003. Logical filtering. In Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-03, volume 3, 75-82.

Backstrom, C., and Jonsson, P. 2013. Bridging the gap be-
tween refinement and heuristics in abstraction. In Proceed-
ings of the Twenty-Third International Joint Conference on
Artificial Intelligence, IICAI *13, 2261-2267. AAAI Press.

Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Main-
taining evolving domain models. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, 3053-3059. AAAI Press.

Camacho, A., and Mcllraith, S. A. 2019. Learning inter-
pretable models expressed in linear temporal logic. In Inter-
national Conference on Automated Planning and Schedul-
ing. ICAPS.

Cresswell, S., and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In International Con-
ference on Automated Planning and Scheduling.

Cresswell, S.; McCluskey, T.; and West, M. 2009. Acquisi-
tion of object-centred domain models from planning exam-
ples. In International Conference on Automated Planning
and Scheduling.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189-208.

Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. JAIR
20(1):61-124.

Giunchiglia, F., and Walsh, T. 1992. A theory of abstraction.
Artificial intelligence 57(2-3):323-389.

Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2017. Flex-
ible abstraction heuristics for optimal sequential planning.
In International Conference on Automated Planning and
Scheduling.

Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 173(5):503 —
535.

Khardon, R., and Roth, D. 1996. Reasoning with models.
Artif. Intell. 87(1-2):187-213.

Kucera, J., and Bartdk, R. 2018. Louga: Learning plan-
ning operators using genetic algorithms. In Yoshida, K., and
Lee, M., eds., Knowledge Management and Acquisition for
Intelligent Systems, 124—138. Cham: Springer International
Publishing.

Lindsay, A.; Read, J.; Ferreira, J.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning models from natural

language action descriptions. In International Conference
on Automated Planning and Scheduling.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence 5(2):115-135.

Settles, B. 2009. Active learning literature survey. Technical
Report 1648, University of Wisconsin-Madison Department
of Computer Sciences.

Srivastava, S.; Russell, S.; and Pinto, A. 2016. Metaphysics
of planning domain descriptions. In AAAI Conference on
Artificial Intelligence.

Stern, R., and Juba, B. 2017. Efficient, safe, and probably
approximately complete learning of action models. In Pro-
ceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence, IJCAI-17, 4405-4411.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artif. Intell.
171(2-3):107-143.

