
User-Aligned Autonomous Capability
Assessment of Black-Box AI Systems

Pulkit Verma and Siddharth Srivastava

AAAI 2024 Spring Symposium on
User-Aligned Assessment of Adaptive AI Systems

Focus: Taskable AI Systems

2

• Sequential Decision-Making
Systems.

• User gives AI systems a task
(an objective).

• AI system needs to figure out
how to complete that task.

• Users would like to give AI systems
multiple tasks.
• How would users know what the

AI systems can do?

• AI systems should support third-party
assessment.

• The assessment should work with
black-box AI systems.

Personalized Assessment of Adaptive AI Systems

3

Agent Functionality
(Keystrokes)

W

A

S

D

E

Defeat Ganon
Go to door
Go to key

Go to Ganon
Pick key

Open door

Capabilities such
as..

Link

Ganon

Key

Door

Capability vs Functionality

4
[Verma, Marpally, Srivastava; KR ‘22]

Easier to reason in terms of capabilities than in terms of functionalities

5

Response

Query

Black-Box AI

Arbitrary internal
implementation

Personalized
AI-Assessment

Module

Black-Box AI

6

Response

Query

Arbitrary internal
implementation

• Should work for a variety of taskable AI systems

• Should be easy to support

Query In state 𝑠!, what will happen if you execute
the plan 𝜋 = ⟨𝑐", … , 𝑐#⟩?

Response I can execute first ℓ steps of the plan,
ending up in state 𝑠$.

Plan Outcome Queries State Reachability Query

Can you go from state 𝑠! to
state 𝑠$?

Yes / No.

Black-Box AI System Interface

7

[Input]
Concepts that the
user understands

Arbitrary internal
implementation

Personalized
AI-Assessment

Module

Doesn’t know
user’s vocabulary

at(p0,cell_6_3)
clear(cell_0_0)
door_at(cell_9_2)
next_to(m0)
alive(m0)
key_at(9_4)

Black-Box AI

8

Response

Query

[Input]
Concepts that the
user understands

Arbitrary internal
implementation

Personalized
AI-Assessment

Module

Doesn’t know
user’s vocabulary

Black-Box AI

9

[Output]
User-Interpretable
model of Black-Box

AI’s capabilities

Response

Query

(:action open-door
 :parameters (?l1)
 :precondition (and
 (has_key)
 (player_at ?l1)
 (door_adjacent ?l1))
 :effect (probabilistic
 0.95 (and (door_open))
 0.05 (and (not (has_key))
 (game-over))
)

Precondition: This condition must be true for this
action to execute

Effect: This is a set of conditions, one of which
becomes true when this action is executed

Probabilities: Each set of effect has an associated
probability with which that effect set is executed

Interpretable Description: PDDL/PPDDL

10

(:action open-door
 :parameters (?l1)
 :precondition (and
 (has_key)
 (player_at ?l1)
 (door_adjacent ?l1))
 :effect (probabilistic
 0.95 (and (door_open))
 0.05 (and (not(has_key))
 (game-over))
)

The player can open the door when in
location ?l1 if:
• It has the key
• The player is at location ?l1
• The door is adjacent to location ?l1
After executing that capability:
• With 95% probability, the door will open
• With 5% probability, the player will not

have the key and the game will be over

Interpretable: Easily Convertible to Natural Language

11

• Consider the following 4
predicates/concepts:

• (has_key)
• (door_open)
• (door_adjacent ?x)
• (player_at ?x)

• Consider just one capability:
(open-door ?x)

• 9 * ×|-| = 9.×/=6561 possible models
(Assuming deterministic models/
descriptions, i.e., no probabilities).

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

Exponential Search for Learning Correct Description

12

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

(∅)has_key(-)has_key

𝑀(𝑀∅

(+)has_key
𝑀*

Generate a
distinguishing query:

𝑄 such that 𝑄 𝑀(≠ 𝑄 𝑀*

Hierarchical Query Synthesis

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

13

Query-plan generated
automatically by

reduction to planning

[Verma, Marpally, Srivastava; AAAI ‘21]

𝑄

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀+ 𝑀,

ℎ𝑎𝑠_𝑘𝑒𝑦
𝑀-

(-)has_key

𝑀(𝑀∅

𝑀*

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

Hierarchical Query Synthesis

14

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21]

𝜃 = 𝑄(𝐴𝑔𝑒𝑛𝑡)
𝑄 𝑀(≠ 𝑄 𝑀*

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀+ 𝑀,

ℎ𝑎𝑠_𝑘𝑒𝑦
𝑀-

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

𝑀(𝑀∅

𝑀*

15

Check the consistency
of refinements with
the agent response

(-)has_key (∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21]

Hierarchical Query Synthesis

𝑀∅

𝑀*

Reject refinement(s) that are
not consistent with the agent

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

16

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21]

Generate a distinguishing query
for these two refinements

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

𝑀∅

𝑀*

17

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21]

Reject the refinement
that is not consistent with the agent

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

(∅)ℎ𝑎𝑠_𝑘𝑒𝑦

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
 :precondition (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))
 :effect (and
 (+/-/∅)(has_key)
 (+/-/∅)(door_open)
 (+/-/∅)(door_adjacent ?l1)
 (+/-/∅)(player_at ?l1))

(+)(has_key)

𝑀*

Hierarchical Query Synthesis

18

At least one of these 3 options
will be consistent with the agent

Lemma

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21]

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

… … …

𝑀! 𝑀∅𝑀#

𝑛% 𝑛. 𝑛'

𝑛. 𝑛'

𝑛'

…

…

…

Whenever we prune an abstract
model, we prune a large number

of concrete models.

Key feature of the algorithm

Hierarchical Query Synthesis

19
[Verma, Marpally, Srivastava; AAAI ‘21]

Active Learning

• Randomly generate an agent and
environment from International
Planning Competition (IPC).

• Evaluate performance of the
assessment module and
compare it with FAMA†.

†Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning Action Models With Minimal Observability. Artificial Intelligence 275: 104–137.

Evaluation with Known Capabilities

20

• User’s vocabulary matches
simulator’s vocabulary.

• Black-Box AI provides a list of
capabilities.

• Deterministic setting.

Assumptions

AAM learned the correct
model with 134 queries

AAM

AAM takes very
less time

AAM

AAM learns Accurate Model with fewer Queries

21

• Random traces as input to FAMA.
• Increased #traces till it ran out of memory.

FAMA ran out of memory
with 46 traces as input

(h
ig

he
r v

al
ue

s
be

tte
r)

(lo
w

er
 v

al
ue

s
be

tte
r)

[Verma, Marpally, Srivastava; AAAI ‘21]

Capability Discovery Differential Assessment Stochastic Setting

[Verma, Marpally, Srivastava; KR ‘22]

Capability Discovery Differential Assessment Stochastic Setting

[Nayyar*, Verma*, Srivastava; AAAI ‘22]

Capability Discovery Differential Assessment Stochastic Setting

[Verma, Karia, Srivastava; NeurIPS ‘23]

User-Aligned Autonomous Capability
Assessment of Black-Box AI Systems

Pulkit Verma and Siddharth Srivastava

Qu
esti

ons
?

