
Asking the Right Questions: Active Action-Model Learning

Pulkit Verma, Shashank Rao Marpally, Siddharth Srivastava
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ 85281 USA
{verma.pulkit, smarpall, siddharths}@asu.edu

Abstract
This paper develops a new approach for estimating an inter-
pretable, relational model of a black-box autonomous agent
that can plan and act. Our main contributions are a new
paradigm for estimating such models using a rudimentary
query interface with the agent and a hierarchical querying
algorithm that generates an interrogation policy for estimat-
ing the agent’s internal model in a user-interpretable vocab-
ulary. Empirical evaluation of our approach shows that de-
spite the intractable search space of possible agent models,
our approach allows correct and scalable estimation of in-
terpretable agent models for a wide class of black-box au-
tonomous agents. Our results also show that this approach
can use predicate classifiers to learn interpretable models of
planning agents that represent states as images.

1 Introduction
The growing deployment of AI systems leads to a pervasive
problem: how would a user ascertain whether an AI system
will be safe, reliable, or useful in a given situation? This
problem becomes challenging when we consider that most
AI systems are not designed by their users; their internal
software may be unavailable or difficult to understand. Such
scenarios feature black-box AI agents whose models may
not be available in terminology that the user understands.

This paper develops an algorithm for estimating inter-
pretable, relational models for such agents by querying
them. In doing so, it requires only a rudimentary agent-
interface that can be supported by a broad class of AI sys-
tems. Consider a situation where Hari(ette) (H) wants a
grocery-delivery robot (A) to bring some groceries, but s/he
is unsure whether it is up to the task and wishes to esti-
mate A’s internal model in an interpretable representation
that s/he is comfortable with (e.g., a relational STRIPS-like
language (Fikes et al. 1971; Fox et al. 2003)). IfH was deal-
ing with a delivery person, s/he might ask them questions
such as “do you think it would be alright to bring refriger-
ated items in a regular bag?” If the answer is “yes” during
summer, it would be a cause for concern. Naı̈ve approaches
for generating such questions to ascertain the internal model
of an agent are infeasible.1 We propose an agent-assessment
module (AAM) which can be connected with an arbitrary AI

1Just 2 actions and 5 grounded propositions would yield
72×5 ∼ 108 possible STRIPS-like models – each proposition could

agent that supports a rudimentary query-response interface:
AAM connects A with a simulator and provides a sequence
of instructions, or a plan as a query. A executes the plan in
the simulator and AAM uses the simulated outcome as the
response to the query. Thus, given an agent, AAM uses as
input: a user-defined vocabulary, the agent’s instruction set,
and a compatible simulator. These inputs reflect natural re-
quirements of the task: AI systems are already designed and
tested using compatible simulators, and they need to specify
their instruction sets in order to be usable.

In developing the first steps towards this paradigm, we as-
sume that the user wishes to estimate A’s internal model as
a STRIPS-like relational model with conjunctive precondi-
tions, add lists, and delete lists, and that A’s model is ex-
pressible as such. Such models can be easily translated into
interpretable descriptions such as “under situations where
preconditions hold, if the A does action a1, ..., ak it would
result in effects,” where preconditions and effects use only
the user-provided concepts.

This fundamental framework (Sec. 2) can be developed to
support different types of agents as well as various query
and response modalities. E.g., queries and responses could
use a speech interface for greater accessibility and agents
with reliable inbuilt simulators/lookahead models may not
need external simulators. This would allow AAM to pose
queries such as “what do you think would happen if you
did 〈 query plan 〉”, and the learnt model would reflect A’s
self-assessment. The “agent” could be an arbitrary entity, al-
though expressiveness of the user-interpretable vocabulary
would govern the scope of learnt models and their accuracy.

Our algorithm for AAM (Sec. 2) generates a sequence of
queries (Q) depending on the agent’s responses (θ) during
the query process; the result of the overall process is a com-
plete model of A. To generate queries, we use a top-down
process that eliminates large classes of agent-inconsistent
models by computing queries that discriminate between
pairs of abstract models. When an abstract model’s answer
to a query differs from A’s answer, we effectively eliminate

be absent, positive or negative in the precondition and effects of
each action, and cannot be positive (or negative) in both precon-
ditions and effect simultaneously. A query strategy that inquires
about each occurrence of each proposition would be not only un-
scalable but also inapplicable on simulator-based agents that do not
know their actions’ preconditions and effects.
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the entire set of possible concrete models that are refine-
ments of this abstract model.

Our empirical evaluation (Sec. 3) shows that this method
can efficiently learn correct models for black-box versions of
agents using hidden models from the international planning
competition (IPC 2011). It also shows that our system can
use image-based predicate classifiers to infer correct mod-
els for simulator-based agents that respond with an image
representing the result of the query plan’s execution.
Related work A number of researchers have explored the
problem of learning agent models from observations of its
behavior (Gil 1994; Yang et al. 2007; Zhuo et al. 2013). To
the best of our knowledge, ours is the first approach to ad-
dress the problem of generating query strategies for inferring
relational models of black-box agents.

Amir et al. (2008) use logical filtering (Amir et al.
2003) to learn partially observable action models from
the observation traces. LOCM (Cresswell et al. 2009) and
LOCM2 (Cresswell et al. 2011) present another class of al-
gorithms that use finite-state machines to create action mod-
els from observed plan traces. Camacho et al. (2019) present
an approach for learning highly expressive LTL models from
an agent’s observed state trajectories using an oracle with
knowledge of the target LTL representation. This oracle can
also generate counterexamples when the estimated model
differs from the true model. In contrast, our approach does
not require such an oracle. Also, unlike Stern et al. (2017),
our approach does not need intermediate states in execution
traces. In contrast to approaches for white-box model main-
tenance (Bryce et al. 2016), our approach does not require
A to know aboutH’s preferred vocabulary.

LOUGA (Kučera et al. 2018) combines a genetic algo-
rithm with an ad-hoc method to learn planning operators
from observed plan traces. FAMA (Aineto et al. 2019) re-
duces model recognition to a planning problem and can
work with partial action sequences and/or state traces as
long as correct initial and goal states are provided. While
both FAMA and LOUGA require a postprocessing step to
update the learnt model’s preconditions to include the in-
tersection of all states where an action is applied, it is not
clear that such a process would necessarily converge to
the correct model. Our experiments indicate that such ap-
proaches exhibit oscillating behavior in terms of model ac-
curacy because some data traces can include spurious pred-
icates, which leads to spurious preconditions being added
to the model’s actions. FAMA also assumes that there are
no negative literals in action preconditions. Khardon et al.
(1996) address the problem of making model-based infer-
ence faster given a set of queries, under the assumption that
a static set of models represents the true knowledge base.

In contrast to these directions of research, our approach
directly queries the agent and is guaranteed to converge to
the true model while presenting a running estimate of the
accuracy of the derived model; so, it can be used in settings
where A’s model changes due to learning or a software up-
date. In such cases, our algorithm can restart to query the
system, while approaches that derive models from observed
plan traces would require arbitrarily long data collection ses-
sions to ensure the collection of sufficient uncorrelated data.

The field of active learning (Settles 2012) addresses the
related problem of selecting which data-labels to acquire
for learning single-step decision-making models using sta-
tistical measures of information. However, the effective fea-
ture set here is the set of all possible plans, which makes
conventional methods for evaluating the information gain
of possible feature labelings infeasible. In contrast, our ap-
proach uses a hierarchical abstraction to select queries to
ask, while inferring a multistep decision-making (planning)
model. Information-theoretic metrics could also be used in
our approach whenever such information is available.

2 The Agent-Interrogation Task
We assume thatH needs to estimateA’s model as a STRIPS-
like planning model (Fikes et al. 1971) represented as a pair
M = 〈P,A〉, where P = {pk1

1 , . . . , p
kn
n } is a finite set

of predicates with arities ki; A = {a1, . . . , ak} is a finite
set of parameterized actions (operators). Each action aj ∈
A is represented as a tuple 〈header(aj), pre(aj), eff(aj)〉,
where header(aj) is the action header consisting of ac-
tion name and action parameters, pre(aj) represents the
set of predicate atoms that must be true in a state where
aj can be applied, eff(aj) is the set of positive or neg-
ative predicate atoms that will change to true or false
respectively as a result of execution of the action aj .
Each predicate can be instantiated using the parameters of
an action, where the number of parameters are bounded
by the maximum arity of the action. E.g., consider the
action load truck(?v1, ?v2, ?v3) and predicate at(?x, ?y)
in the IPC Logistics domain. This predicate can be in-
stantiated using action parameters ?v1, ?v2, and ?v3
as at(?v1, ?v1), at(?v1, ?v2), at(?v1, ?v3), at(?v2, ?v2),
at(?v2, ?v1), at(?v2, ?v3), at(?v3, ?v3), at(?v3, ?v1), and
at(?v3, ?v2). We represent the set of all such possible pred-
icates instantiated with action parameters as P∗.

AAM uses the following information as input. It receives
its instruction set in the form of header(a) for each a ∈ A
from the agent. AAM also receives a predicate vocabulary P
from the user with functional definitions of each predicate.
This gives AAM sufficient information to perform a dialog
withA about the outcomes of hypothetical action sequences.

We define the overall problem of agent interrogation as
follows. An agent interrogation task is defined as a tuple
〈MA,Q,P,AH〉, where MA is the true model (unknown
to AAM) of the agent A being interrogated, Q is the class
of queries that can be posed to the agent by AAM, and P
and AH are the sets of predicates and action headers that
AAM uses based on inputs from H and A. The objective
of the agent interrogation task is to derive the agent model
MA using P and AH . Let Θ be the set of possible answers
to queries. Thus, strings θ∗ ∈ Θ∗ denote the information
received by AAM at any point in the query process. Query
policies for the agent interrogation task are functions θ∗ →
Q ∪ {S} that map sequences of answers to the next query
that AAM should ask. The process stops with the S (Stop)
query. In other words, for all answers θ ∈ Θ, all valid query
policies map all sequences xθ to S whenever x ∈ Θ∗ is
mapped to S. This policy is computed and executed online.



Figure 1: (b) Lattice segment explored in random order of γi ∈ Γ;
(a) At each node, 3 abstract models are generated and 2 of them are
discarded based on query responses; (c) An abstract model rejected
at any level is equivalent to rejecting 3 models at the level below, 9
models two levels down, and so on.

Components of agent models To formulate our solution
approach, we consider a modelM to be comprised of com-
ponents called palm tuples of the form λ = 〈p, a, l,m〉,
where p ∈ P∗ is an instantiated predicate, a ∈ A is an
action, l ∈ {pre, eff}, and m ∈ {+,−, ∅}. We use the sub-
scripts p, a, l orm to denote the corresponding component in
a palm tuple. The presence of a palm tuple λ in a model de-
notes that in that model, λp appears in λa at a location λl as a
true (false) literal when sign λm is positive (negative), and is
absent when λm = ∅. This allows us to define the set-minus
operation M \λ on this model as removing the palm tuple λ
from the model. Two palm tuples λ1 = 〈p1, a1, l1,m1〉 and
λ2 = 〈p2, a2, l2,m2〉 are variants of each other iff they dif-
fer only on mode m. Hence, mode assignment to a pal tuple
γ = 〈p, a, l〉 can result in 3 palm variants γ+ = 〈p, a, l,+〉,
γ− = 〈p, a, l,−〉, and γ∅ = 〈p, a, l, ∅〉.
Model abstraction We now define the notion of abstrac-
tion used in our solution approach. Several approaches have
explored the use of abstraction in planning (Sacerdoti 1974;
Giunchiglia et al. 1992; Helmert et al. 2007; Bäckström et al.
2013; Srivastava et al. 2016). The following definition ex-
tends the concept of predicate and propositional domain ab-
stractions (Srivastava et al. 2016) to allow for the projection
of a single palm tuple λ. An abstract model is one in which
all variants of at least one pal tuple are absent. Let Λ be the
set of all possible palm tuples which can be generated using
a predicate vocabulary P∗ and an action header set AH . Let
U be the set of all consistent (abstract and concrete) models
that can be expressed as subsets of Λ, such that no model
has multiple variants of the same palm tuple.

Definition 1. The model abstraction M with respect to a
palm tuple λ∈Λ, is defined by fλ:U→U as fλ(M)=M\λ.

We use this abstraction framework to define a subset-
lattice over abstract models (Fig. 1(b)). Each node in the
lattice represents a collection of possible abstract models
which are possible variants of a pal tuple γ. E.g., in the node
labeled 1 in Fig. 1(b), we have models corresponding to γ+1 ,
γ−1 , and γ∅1 . Two nodes in the lattice are at the same level
of abstraction if they contain the same number of pal tuples.
Two nodes ni and nj in the lattice are connected if all the
models at ni differ with all the models in nj by a single
palm tuple. As we move up in the lattice following these

edges, we get more abstracted versions of the models, and
we get more concretized models as we move downward.
Definition 2. A model lattice L is a 5-tuple L =
〈N,E,Γ, `N , `E〉, where N is a set of lattice nodes, Γ is
the set of all pal tuples 〈p, a, l〉, `N : N → 22

Λ

is a node
label function where Λ = Γ × {+,−, ∅} is the set of all
palm tuples, E is the set of lattice edges, and `E : E → Γ is
a function mapping edges to edge labels such that for each
edge ni → nj , `N (nj) = {ξ ∪ {γk}| ξ ∈ `N (ni), γ =
`E(ni → nj), k ∈ {+,−, ∅}}, and `N (>) = {φ} where >
is the supremum containing the empty model φ.

A node n ∈ N in this lattice L can be uniquely identified
as the sequence of pal tuples that label the edges leading
to it from >. As Fig. 1(a) shows, even though theoretically
` : n 7→ 22

Λ

, not all models are stored at any node as at least
one is pruned out based on some query Q ∈ Q. In these
lattices, every node has an outgoing edge corresponding to
each pal tuple that is absent in the paths leading to it from>.
At any stage, nodes in such a lattice are used to represent the
set of possible models given A’s responses up to that point.
Form of agent queries As discussed earlier, based on A’s
responses θ we pose queries to the agent and infer A’s
model. We express queries as functions that map models to
answers. Recall that U is the set of all possible (concrete and
abstract) models, and Θ is the set of possible responses. A
query Q is a function Q : U → Θ.

In this paper, we utilize only one class of queries: plan
outcome queries (QPO), which are parameterized by a state
sI and a plan π. Let P be the set of predicates P∗ instanti-
ated with objects O in an environment. QPO queries ask A
the length plan π’s longest prefix that it can execute success-
fully when starting in the state sI ⊆ P as well as the final
state sF ⊆ P that this execution leads to. E.g., “Given that
the truck t1 and package p1 are at location l1, what would
happen if you executed the plan 〈load truck(p1, t1, l1),
drive(t1, l1, l2), unload truck(p1, t1, l2)〉?”

A response to such queries can be of the form “I can ex-
ecute the plan till step ` and at the end of it p1 is in truck
t1 which is at location l1”. Formally, the response θPO for
plan outcome queries is a tuple 〈`, sF 〉, where ` is the num-
ber of steps for which the plan π could be executed, and
sF ⊆ P is the final state after executing ` steps of the plan.
If the plan π cannot be executed fully according to the agent
model MA then ` < len(π), otherwise ` = len(π). The
final state sF ⊆ P is such thatMA |= π[0 : `](sI) = sF ,
i.e., starting with a state sI ,MA successfully executed first
` steps of the plan π. Thus, QPO : U → N × 2P , where N
is the set of natural numbers.

A query is useful only if it can distinguish between two
models. More precisely, a query Q is said to distinguish
a pair of models Mi and Mj , denoted as Mi

QMj , iff
Q(Mi) 6= Q(Mj). Two modelsMi andMj are said to be
distinguishable, denoted asMi Mj , iff there exists a query
that can distinguish between them, i.e., ∃Q Mi

QMj .
Given a pair of abstract models, we wish to determine

whether one of them can be pruned. Since this is compu-
tationally expensive to determine, and we wish to reduce
the number of queries made to the agent, we first evaluate



(a)MA’s load truck(?p,?t,?l) action (unknown toH)
at(?t,?l),
at(?p,?l)

−→ in(?p,?t),
¬(at(?p,?l))

(b)M1’s load truck(?p,?t,?l) action
at(?t,?l),
at(?p,?l)

−→ in(?p,?t)

(c)M2’s load truck(?p,?t,?l) action
at(?t,?l) −→ in(?p,?t)

Figure 2: load truck actions of the agent modelMA and three ab-
stracted modelsM1, andM2. HereX −→ Y means thatX is the
precondition of an action and Y is the effect.

whether the 2 models can be distinguished by any query, in-
dependent of consistency of their response with that of A.
If the models are not distinguishable, it is redundant to try
to prune one of them under the given query class. Next, we
determine if at least one of the two distinguishable models is
consistent with the agent. When comparing the responses of
two models at different levels of abstraction, we must also
evaluate if the response ofM′ is consistent with that of A.

Definition 3. Let Q be a query such that
Mi

QMj ; Q(Mi) = 〈`i, 〈pi1, . . . , pim〉〉, Q(Mj) =

〈`j , 〈pj1, . . . , pjn〉〉, and Q(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉.
Mi’s response to Q is consistent with that of MA, i.e.
Q(MA) |= Q(Mi) if `A = len(πQ), len(πQ) = `i and
{pi1, . . . , pim} ⊆ {pA1 , . . . , pAk }.
Definition 4. Given an agent-interrogation task
〈MA,Q,P,AH〉, two models Mi and Mj are prun-
able, denoted as Mi〈〉Mj , iff ∃Q ∈ Q : Mi

QMj

∧ (Q(MA) |= Q(Mi) ∧ Q(MA) 6|= Q(Mj)) ∨
(Q(MA) 6|= Q(Mi) ∧ Q(MA) |= Q(Mj)).

2.1 Solving the Interrogation Task
We now discuss how we solve the agent interrogation task by
incrementally adding palm variants to the class of abstract
models and pruning out inconsistent models by generating
distinguishing queries.

Example 1. Consider the case of a delivery agent. Assume
that AAM is considering two abstract modelsM1 andM2

having only one action load truck(?p, ?t, ?l) and the pred-
icates at(?p, ?l), at(?t, ?l), in(?p, ?t), and that the agent’s
model is MA (Fig. 2). AAM can ask the agent what will
happen if A loads package p1 into truck t1 at location l1
twice. The agent would respond that it could execute the
plan only till length 1, and the state at the time of this failure
would be at(t1, l1) ∧ in(p1, t1).

Algorithm 1 shows AAM’s overall algorithm. It takes the
agent A, the set of instantiated predicates P∗, the set of all
action headers AH , and a set of random states S as input,
and gives the set of functionally equivalent estimated mod-
els represented by poss models as output. AIA initializes
poss models as a set consisting of the empty model φ (line
3) representing that AAM is starting at the supremum >.

In each iteration of the main loop (line 4), AIA main-
tains an abstraction lattice and keeps track of the current
node in the lattice. It picks a pal tuple γ corresponding to
one of the descending edges from a node given by some

Algorithm 1 Agent Interrogation Algorithm (AIA)
1: Input: A,AH ,P∗, S
2: Output: poss models
3: Initialize poss models = {∅}
4: for γ in some input pal ordering Γ do
5: new models← poss models
6: pruned models= {∅}
7: for eachM′ in new models do
8: for each pair {i, j} in {+,−, ∅} do
9: Q,Mi,Mj ← generate query(M′, i, j, γ, S)

10: Mprune←filter models(Q,MA,Mi,Mj)
11: pruned models← pruned models ∪Mprune

12: end for
13: end for
14: if pruned models is ∅ then
15: update pal ordering(Γ, S)
16: continue
17: end if
18: poss models← new models ×{γ+, γ−, γ∅} \

pruned models
19: end for

input ordering of Γ. The correctness of the algorithm does
not depend on this ordering. It then stores a temporary copy
of poss models as new models (line 5) and initialize an
empty set at each node to store the pruned models (line 6).

The inner loop (line 7) iterates over the set of all pos-
sible abstract models that AIA has not rejected yet, stored
as new models. It then loops over pairs of modes (line 8),
which are later used to generate queries and refine mod-
els. For these modes, generate query() is called (line 9)
which returns 2 concrete models with the chosen modes and
a query Q which can distinguish them based on their re-
sponses. AIA then calls filter models() which poses Q to A
and the two models. Based on their responses, AIA prunes
the models whose responses are not consistent with that ofA
(line 11). Then it updates the estimated set of possible mod-
els represented by poss models (line 18). If AIA is unable
to prune any model at a node (line 14), it modifies the pal or-
dering (line 15). AIA continues this process until it reaches
the most concretized node of the lattice (meaning all palm
tuples λ ∈ Λ are refined). The remaining set of models rep-
resents the estimated set of models for A. The number of
resolved palm tuples can be used as a running estimate of
accuracy of the derived models. AIA requires O(|P∗|×|A|)
queries as there are 2 × |P∗|×|A| pal tuples. However, our
experiments show that we never generate so many queries.

2.2 Query Generation
The query generation process corresponds to the gener-
ate query() module in AIA which takes a modelM′, the pal
tuple γ and 2 modes i, j ∈ {+,−, ∅} as input, and returns
the modelsMi =M′ ∪ {γi} andMj =M′ ∪ {γj}, and a
plan outcome queryQ distinguishing them, i.e.,Mi

QMj .
Plan outcome queries have 2 components, an initial state

sI and a plan π. AIA gets sI from the input set of random
states S. Using sI as the initial state, the idea is to find a plan,
which when executed byMi andMj will lead them either
to different states, or to a state where only one of them can
execute the plan further. Later we pose the same query to A
and prune at least one of Mi and Mj . Hence, we aim to



prevent the models inconsistent with the agent model MA
from reaching the same final state asMA after executing the
queryQ and following a different state trajectory. To achieve
this, we reduce the problem of generating a plan outcome
query fromMi andMj into a planning problem.

The reduction proceeds by creating temporary models
M′′i andM′′j . To generate them, we add the pal tuple γ =
〈p, a, l〉 in modes i and j toM′ to getM′i andM′j respec-
tively. If the location l = eff, we add the palm tuple normally
toM′, i.e.,M′m =M′ ∪ 〈p, a, l,m〉, where m ∈ {i, j}. If
l = pre, we add a dummy predicate pu in disjunction with
the predicate p to the precondition of both the models. We
then modify the modelsM′i andM′j in the following way:

M′′m =M′m∪{〈pu, a′, l′,+〉 : ∀a′, l′ 〈a′, l′〉 6∈
{〈a∗, l∗〉 : ∃m∗ 〈p, a∗, l∗,m∗〉 ∈ M′}}
∪ {〈pu, a′, l′,−〉 : ∀a′, l′ 〈a′, l′〉 ∈
{〈a∗, l∗〉: l∗=eff ∧∃m∗〈p, a∗, l∗,m∗〉∈M′}}

pu is added only for generating a distinguishing query and
is not part of the modelsMi andMj returned by the query
generation process. Without this modification, an inconsis-
tent abstract model may have a response consistent with A.

We now show how to reduce plan outcome query gen-
eration into a planning problem PPO. PPO uses condi-
tional effects in its actions (in accordance with PDDL (Fox
et al. 2003)). The model used to define PPO has predicates
from both models M′′i and M′′j represented as PM′′

i and
PM

′′
j respectively, in addition to a new dummy predicate

pψ . The action headers are the same as AH . Each action’s
precondition is a disjunction of the preconditions of M′′i
and M′′j . This makes an action applicable in a state s if
either M′′i or M′′j can execute it in s. The effect of each
action has 2 conditional effects, the first applies the effects
of bothM′′i andM′′j ’s action if preconditions of bothM′′i
and M′′j are true, whereas the second makes the dummy
predicate pψ true if precondition of only one of M′′i and
M′′j is true. Formally, we express this planning problem as
PPO = 〈MPO, sI , G〉, whereMPO is a model with pred-
icates PPO = PM′′

i ∪ PM
′′
j ∪ pψ , and actions APO where

for each action a ∈ APO, pre(a) = pre(aM
′′
i ) ∨ pre(aM

′′
j )

and eff(a) =

(when (pre(aM
′′
i ) ∧ pre(aM

′′
j ))(eff (aM

′′
i ) ∧ eff (aM

′′
j )))

(when ((pre(aM
′′
i ) ∧ ¬pre(aM

′′
j ))∨

(¬pre(aM
′′
i ) ∧ pre(aM

′′
j ))) (pψ)),

The initial state sI = s
M′′

i

I ∧ sM
′′
j

I , where sM
′′
i

I and s
M′′

j

I
are copies of all predicates in sI , and G is the goal formula
expressed as ∃p (pM

′′
i ∧ ¬pM

′′
j ) ∨ (¬pM′′

i ∧ pM
′′
j ) ∨ pψ .

With this formulation, the goal is reached when an action
inM′′i andM′′j differs in either a precondition or an effect.
The following theorem2 formalizes these notions.

2Proof sketches of all the theorems are available in the longer
version of the paper in the Proceedings of AAAI 2021 as Verma
et al. (2021): https://bit.ly/3p4cVRu.

Theorem 1. Given a pair of modelsMi andMj , the plan-
ning problem PPO has a solution iff Mi and Mj have a
distinguishing plan outcome query QPO.

2.3 Filtering Possible Models
This section describes the filter models() module in Algo-
rithm 1 which takes as inputMA,Mi,Mj , and the query
Q (Sec. 2.2), and returns the subset Mprune which is not
consistent withMA. First, AAM poses the query Q toMi,
Mj and the agent A. Based on the responses of all three, it
determines if the two models are prunable, i.e., Mi〈〉Mj .
As mentioned in Def. 4, checking for prunability involves
checking if response to the query Q by one of the models
Mi orMj is consistent with that of the agent or not.

Theorem 2. Let Mi,Mj ∈ {M+,M−,M∅} be the
models generated by adding the pal tuple γ to M′ which
is an abstraction of the true agent model MA. Suppose
Q = 〈sQI , πQ〉 is a distinguishing query for two distinct
modelsMi,Mj , i.e.Mi

QMj , and the response of mod-
els Mi,Mj , and MA to the query Q are Q(Mi) =

〈`i, 〈pi1, . . . , pim〉〉, Q(Mj) = 〈`j , 〈pj1, . . . , pjn〉〉, and
Q(MA) = 〈`A, 〈pA1 , . . . , pAk 〉〉. When `A = len(πQ),
Mi is not an abstraction of MA if len(πQ) 6= `i or
{pi1, . . . , pim} 6⊆ {pA1 , . . . , pAk }.

If the models are prunable, then the palm tuple being
added in the inconsistent model cannot appear in any model
consistent with A. As we discard such palm tuples at ab-
stract levels (as depicted in Fig. 1 (a)), we prune out a large
number of models down the lattice (as depicted in Fig. 1 (c)),
hence we keep the intractability of the approach in check and
end up asking less number of queries.

2.4 Updating PAL ordering
This section describes the update pal ordering() module
in AIA (line 15). It is called when the query generated
by generate query() module is not executable by A, i.e.,
len(πQ) 6= `A. Recall that in response to the plan outcome
query we get the failed action aF = π[`+1] and the final
state sF . Since the query plan π is generated usingMi and
Mj (which differ only in the newly added palm tuple), they
both would reach the same state sF after executing first `
steps of π. Thus, we search S for a state s ⊃ sF where A
can execute aF . Then, we iterate through the set of predi-
cates p′ ⊆ s \ sF and add them to sF to check if A can
still execute aF . Similar to Stern et al. (2017), we infer that
any predicate instantiation corresponding to false literals in
a state will not appear in aF ’s precondition in the positive
mode. Thus, if A cannot execute aF in state sF ∪ p′, we
add predicates in p′ in negative mode in aF ’s precondition,
otherwise in ∅ mode. All pal tuples whose modes are cor-
rectly inferred in this way are therefore removed from the
pal ordering.

2.5 Correctness of Agent Interrogation Algorithm
Theorem 3. The Agent Interrogation Algorithm (algorithm
1) will always terminate and return a set of models, each of
which are functionally equivalent to the agent’s modelMA.

https://bit.ly/3p4cVRu


Domain |P∗| |A| |Q̂| tµ (ms) tσ (µs)
gripper 5 3 17 18.0 0.2
blocksworld 9 4 48 8.4 36
miconic 10 4 39 9.2 1.4
parking 18 4 63 16.5 806
logistics 18 6 68 24.4 1.73
satellite 17 5 41 11.6 0.87
termes 22 7 134 17.0 110.2
freecell 100 10 535 2.24† 33.4†

Table 1: The number of queries (|Q̂|), average time per query (tµ),
and variance of time per query (tσ) generated by AIA with FD.
Average and variance are calculated for 10 runs of AIA, each on a
separate problem. †Time in sec.

3 Empirical Evaluation
We implemented AIA in Python to evaluate the efficacy of
our approach. In this implementation, initial states (S, line 1
in Algorithm 1) were collected by making the agent perform
random walks in a simulated environment. We used a maxi-
mum of 60 such random initial states for each domain in our
experiments. The implementation assumes that the domains
do not have any constants and that actions and predicates do
not use repeated variables (e.g., at(?v, ?v)), although these
assumptions can be removed in practice without affecting
the correctness of algorithms. The implementation is op-
timized to store the agent’s answers to queries; hence the
stored responses are used if a query is repeated.

We tested AIA on two types of agents: symbolic-agents
that use models from the IPC (unknown to AIA) and
simulator-agents that report states as images using PDDL-
Gym. The analysis presented below shows that AIA learns
the correct model with a reasonable number of queries,
and compares our results with the closest related work,
FAMA (Aineto et al. 2019). We use the metric of model
accuracy in the following analysis: the number of correctly
learnt palm tuples normalized with the total number of palm
tuples inMA. We now describe our experimental results.
Experiments with symbolic-agents We initialized the
agent with one of the 8 IPC domain models, and ran AIA
on the resulting agent. 10 different problem instances were
used to obtain average performance estimates. Table 1 shows
that the number of queries required increases with the num-
ber of predicates and actions in the domain. We used Fast
Downward (Helmert 2006) to solve the planning problems.
Comparison with FAMA We compare the performance of
AIA with that of FAMA in terms of stability of the models
learnt and the time taken per query. Since the focus of our
approach is on automatically generating useful traces, we
provided FAMA randomly generated traces of length 3 (the
length of the longest plans in AIA-generated queries) of the
form used throughout this paper (〈sI , a1, a2, a3, sG〉).

Fig. 3 summarizes our findings. AIA takes lesser time per
query and shows better convergence to the correct model.
FAMA sometimes reaches nearly accurate models faster, but
its accuracy continues to oscillate, making it difficult to as-
certain when the learning process should be stopped (we in-
creased the number of traces provided to FAMA until it ran
out of memory). This is because the solution to FAMA’s in-
ternal planning problem introduces spurious palm tuples in
its model if the example traces do not capture the complete
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Figure 3: Performance comparison of AIA and FAMA in terms
of model accuracy and time taken per query with an increasing
number of queries.

dynamics of the domain. For Logistics, FAMA generated an
incorrect planning problem, whereas for Freecell it ran out
of memory (AIA also took considerable time for it). Ad-
ditionally, in domains with negative preconditions like Ter-
mes, FAMA was unable to learn the correct model. We used
Madagascar (Rintanen 2014) with FAMA as it is the pre-
ferred planner for it.
Experiments with simulator-agents AIA can also be used
with simulator-agents that do not know about predicates and
report states as images. To test this, we wrote classifiers for
detecting predicates from images of simulator-states in the
PDDLGym (Silver et al. 2020) framework. This framework
provides ground-truth PDDL models, thereby simplifying
the estimation of accuracy. We initialized the agent with one
of the two PDDLGym environments, Sokoban and Doors.
AIA inferred the correct model in both cases and the num-
ber of instantiated predicates, actions, and the average num-
ber of queries (over 5 runs) used to predict sokoban were 35,
3, and 217, and that for doors were 10, 2, and 188.

4 Conclusion
We presented a novel approach for efficiently learning the
internal model of an autonomous agent in a STRIPS-like
form through query answering. Our theoretical and empir-
ical results showed that the approach works well for both
symbolic and simulator agents.

Extending our predicate classifier to handle noisy state
detection, similar to prevalent approaches using classifiers
to detect symbolic states (Konidaris et al. 2014; Asai et al.
2018) is a good direction for future work. Some other
promising extensions include replacing query and response
communication interfaces between the agent and AAM with
a natural language similar to Lindsay et al. (2017), or learn-
ing other representations like Zhuo et al. (2014).
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