
Discovering User-Interpretable Capabilities of Black-Box Planning Agents

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava
Autonomous Agents and Intelligent Robots Lab,

School of Computing and Augmented Intelligence, Arizona State University, USA
{verma.pulkit, smarpall, siddharths}@asu.edu

Abstract

Several approaches have been developed for answering users’
specific questions about AI behavior and for assessing their
core functionality in terms of primitive executable actions.
However, the problem of summarizing an AI agent’s broad
capabilities for a user is comparatively new. This paper
presents an algorithm for discovering from scratch the suite of
high-level “capabilities” that an AI system with arbitrary in-
ternal planning algorithms/policies can perform. It computes
conditions describing the applicability and effects of these ca-
pabilities in user-interpretable terms. Starting from a set of
user-interpretable state properties, an AI agent, and a simu-
lator that the agent can interact with, our algorithm returns a
set of high-level capabilities with their parameterized descrip-
tions. Empirical evaluation on several game-based scenarios
shows that this approach efficiently learns descriptions of var-
ious types of AI agents in deterministic, fully observable set-
tings. User studies show that such descriptions are easier to
understand and reason with than the agent’s primitive actions.

1 Introduction
AI systems are rapidly developing to an extent where their
users may not understand what they can and cannot do
safely. In fact, the limits and capabilities of many AI sys-
tems are not always immediately clear even to the experts,
as they may use black box policies, e.g., ATARI game-
playing agents (Greydanus et al. 2018), text summarization
tools (Paulus, Xiong, and Socher 2018), mobile manipula-
tors (Popov et al. 2017), etc.

Ongoing research on the topic focuses on the signifi-
cant problem of how to answer users’ questions about the
system’s behavior while assuming that the user and AI
share a common action vocabulary (Chakraborti et al. 2017;
Dhurandhar et al. 2018; Anjomshoae et al. 2019; Barredo
Arrieta et al. 2020). Furthermore, most non-experts hesi-
tate to ask questions about new AI tools (Mou and Xu 2017)
and often do not know which questions to ask for assess-
ing the safe limits and capabilities of an AI system. This
problem is aggravated in situations where an AI system can
carry out planning or sequential decision making. Lack of
understanding about the limits of an imperfect system can
result in unproductive usage or, in the worst-case, serious
accidents (Randazzo 2018). This, in turn, limits the adop-
tion and productivity of AI systems.

This work presents a new approach for discovering ca-
pabilities of a black-box AI system. The AI system may
use arbitrary internal models, representations, and processes
for computing solutions to user-assigned tasks. Prior work
on the topic addresses complementary problems of deriv-
ing symbolic descriptions for pre-defined skills (Konidaris,
Kaelbling, and Lozano-Perez 2018) and of learning users’
conceptual vocabularies (Kim et al. 2018; Sreedharan et al.
2022). However, they do not address the problem of discov-
ering high-level user-interpretable capabilities that an agent
can perform using arbitrary, internal behavior synthesis al-
gorithms (see Sec.5 for a greater discussion).

As a starting point, in this paper, we assume determinism
and full observability on part of the AI system. Since there
are no solution approaches for solving the problem even in
this foundational setting, our framework can serve as a foun-
dation for solutions to the more general setting in the future.

Running example Consider a game based on “The Leg-
end of Zelda” (Fig. 1) featuring a protagonist player Link
who must defeat the antagonist monster Ganon, and escape
through the door using a key. (Fig. 1)(a) shows the game
state as the agent sees it; its primitive actions are keystrokes
as shown in (b). These keystrokes do not help convey the
agent’s capabilities because (i) they are too fine-grained, and
(ii) they show the set of actions available to the AI system,
although its true capabilities depend on its AI planning and
learning algorithms. Fig. 1(c) shows common English terms
that a user might understand (called the user’s vocabulary),
and the types of capabilities that they may want to know
about. Fig. 1(d) shows a parameterized capability discov-
ered by our method. Intuitively, Fig. 1(d) captures the “de-
feat Ganon” capability.

This paper shows how we can discover and describe an
agent’s capabilities in the form of Fig. 1(d). This capabil-
ity description can be readily transcribed as “If the player1
is at cell1; the monster1 is at cell2; the monster1 is alive
(not defeated); and the monster1 is next to the player1; then
the player1 can act to reach a state where cell2 is empty; the
monster1 is not alive (defeated); the monster1 is not at cell2;
and the player1 is not next to the monster1.” Our empirical
evaluation shows that our system effectively discovers such
high-level capabilities; our user study shows that the discov-
ered capabilities help users effectively estimate black-box

In Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning (KR 2022)
Haifa, Israel

State in User's Vocabulary:
(at ganon 5-3)
(at key 9-4)
(alive ganon)

.

.
Desired:

Capabilities such as:
(Go next to Key),(Pick
Key),(Go next to Door),
(Go next to Ganon),(Open

Door),(Defeat Ganon)

State as available to the agent:
(pixel 1-1 #FD2310)
(pixel 1-1 #B24319)

.

.

Agent actions
(keystrokes):
W,A,S,D,E

(:capability c4
 :parameters (?player1 ?cell1
 ?monster1 ?cell2)
 :precondition
 (and (alive ?monster1)
 (at ?player1 ?cell1)
 (at ?monster1 ?cell2)
 (next_to ?monster1))
 :effect
 (and (clear ?cell2)
 (not(alive ?monster1))
 (not(at ?monster1 ?cell2))
 (not(next_to ?monster1))))

Link Key

Ganon Door

(a) (b) (c) (d)

Figure 1: From pixels to interpretable capabilities. (a) A Zelda-like game; (b) States available to the agent and its actions; (c) States
represented in user vocabulary, and possible set of desired capabilities; (d) A parameterized capability description learned by our method.

agent capabilities.
The rest of this paper is organized as follows. The next

section presents a formal framework for capabilities as well
as notions of correctness for discovered agent capabilities.
Sec. 3 describes our main algorithms and their formal prop-
erties and Sec. 4 presents empirical results and results from
user studies. Sec. 5 discusses the relationship of the pre-
sented methods with prior work. Finally, Sec. 6 presents our
conclusion and future directions.

2 Formal Framework
We model an AI system (“agent” henceforth) as a 3-tuple
⟨S,A, T ⟩, where S is the state space, A is the set of actions
that the agent can execute, T : S×A→ S is a deterministic
black-box transition function determining the effects of the
agent’s primitive actions on the environment. For brevity of
notation, we use a(s) to represent T (s, a), where a ∈ A, and
s ∈ S. Given a goal set G ⊆ S, a black-box deterministic
policy Π : S → A maps each state to the action that the
agent should execute in that state to reach a g ∈ G.

In this paper, we use “actions” to refer to the core func-
tionality of the agent, denoting the agent’s decision choices,
or primitive actions that the agent could execute (e.g.,
keystrokes in our running example). In contrast, we use the
term “capabilities” to refer to the high-level behaviors that
the agent can perform using its AI algorithms for behavior
synthesis, including planning and learning (e.g., defeating
Ganon or picking up the key). Thus, actions refer to the
set of choices that a tabular-rasa agent may possess, while
capabilities are a result of its agent function (Russell 1997)
and can change as a result of algorithmic updates even as the
agent uses the same actions.

2.1 Abstraction
We now define the notion of abstraction used in this work.
Several approaches have explored the use of abstraction
in planning (Sacerdoti 1974; Giunchiglia and Walsh 1992;
Helmert et al. 2007; Bäckström and Jonsson 2013; Srivas-
tava, Russell, and Pinto 2016). We refer to S̃ as the set of
high-level or abstract states, and S as the set of low-level
or concrete states. We define abstraction as in (Srivastava,
Russell, and Pinto 2016):

Definition 1. Let S and S̃ be sets such that |S̃| ≤ |S|. An
abstraction from S to S̃ is defined by a surjective function
f : S → S̃. For any s̃ ∈ S̃, the concretization function
f−1(s̃) = {s ∈ S : f(s) = s̃} denotes the set of states
represented by the abstract state s̃.

Following this, we use ˜ whenever we refer to a state, a
predicate, or an action pertaining to the abstract state space.

2.2 Capability Descriptions
We express capability descriptions using a STRIPS-like
representation (Fikes and Nilsson 1971; McDermott et al.
1998). This is because, when used with a user’s vocabu-
lary, such a representation can be readily transcribed into
statements such as “in situations whereX holds, if the agent
executes actions a1, . . . , ak it would result in Y ”, where X
and Y are in the user’s vocabulary (Camacho and McIlraith
2019; Verma, Marpally, and Srivastava 2021). Such repre-
sentations have been shown to be intuitive for humans in
understanding deliberative behaviors of other agents (Malle
2004; Miller 2019). In our running example, such a descrip-
tion could indicate that if Link is next to Ganon then Link
can defeat it. We now formally define a capability.

Definition 2. Given a set of objects Õ; and a finite set of
predicates P̃ = {p̃k11 , . . . , p̃knn } with arities ki; a grounded
capability c̃∗ is defined as a tuple ⟨pre(c̃∗), eff(c̃∗)⟩ where
precondition pre(c̃∗) and effect eff(c̃∗) are conjunctions of
literals over P̃ and Õ.

We also refer to the tuple ⟨c̃∗, pre(c̃∗), eff(c̃∗)⟩ as the ca-
pability description for a capability c̃∗. Here each atom
could be absent, positive, or negative (henceforth referred to
as the mode) in the precondition and the effect of an action.
However, we disallow atoms to be positive (or negative) in
both the preconditions and the effects of an action simulta-
neously to avoid redundancy. Semantics of capabilities are
close to those of STRIPS actions, but they address vocabu-
lary disparity: an agent can execute a capability c̃∗ in any
concrete state s where s̃ |= pre(c̃∗); as a result, the system
reaches a concrete state s′ (a member of an abstract state s̃′).
Atoms that don’t appear in eff(c̃∗) retain their truth values
from s̃ in s̃′ while others are set to their modes (positive,

negative, or absent) in eff(c̃∗), i.e., ∀ℓ ∈ eff(c̃∗), s̃′ |= ℓ. For
brevity, we represent this as s̃′ = c̃∗(s̃).

We refer to the capabilities defined in Def. 2 as grounded
capabilities as they are instantiated with a specific set of ob-
jects in Õ. We use ∗ whenever we refer to a grounded
capability. We define a lifted form of capabilities as param-
eterized capabilities.

Definition 3. Given a set of objects Õ; a finite set of pred-
icates P̃ = {p̃k11 , . . . , p̃knn } with arities ki; a parameter-
ized capability c̃ is defined a 3-tuple ⟨args(c̃), pre(c̃), eff(c̃)⟩
where args(c̃) is the set of arguments that can be initialized
with a set of objects õ ⊆ Õ; and pre(c̃) and eff(c̃) are sets of
literals over P̃ and args(c̃).

A set of parameterized capabilities constitutes a param-
eterized capability model. Formally, a parameterized capa-
bility model is a tuple M̃ = ⟨P̃ , C̃⟩, where P̃ is a finite set of
predicates, and C̃ is a finite set of parameterized capabilities.

Our objective is to develop a capability discovery al-
gorithm that learns a parameterized capability model of a
black-box AI agent using as input (i) the agent, (ii) a compat-
ible simulator using which the agent can simulate its primi-
tive action sequences, and (iii) the user’s concept vocabulary,
which may be insufficient to express the simulator’s state
representation. Such assumptions on the agent are common.
In fact, the use of third-party simulators for development and
testing is the bedrock of most of the research on taskable
AI systems today (including game-playing AI, autonomous
cars, and factory robots). Providing simulator access for as-
sessment is reasonable as it would allow AI developers to
retain freedom and proprietary controls on internal software
while supporting calls for assessment and regulation using
approaches such as ours.

Our user studies show the efficacy of this approach us-
ing spoken English terms for concepts without an explicit
process for vocabulary synchronization. Several threads of
ongoing research address the problem of identifying user-
specific concept vocabularies (e.g., Kim et al. (2018), Sreed-
haran et al. (2022)), and the field of intelligent tutoring sys-
tems develops methods for helping users understand a fixed
concept vocabulary. These methods can be used to either
elicit or impart a vocabulary for a given user and such sys-
tems can be used to complement the methods developed in
this paper.

However, since the problem of capability discovery is not
well understood even in settings where user-concept defini-
tions are readily available, we focus on capability discovery
with a given vocabulary with known definitions and formal-
ize our approach using them. Furthermore, our empirical
evaluation and user studies don’t place requirements on user
concept vocabularies and show the efficacy of this represen-
tation. We formalize these concept definitions as follows:
Definition 4. Given a concrete state s ∈ S, a set of ob-
jects Õ and their tuples Õ≤d (of dimension at most d,
where d is a positive integer), a set of concepts/predicates
P̃ = p̃k11 , . . . , p̃

kn
n with their arities ki and an associated

Boolean evaluation function ψp̃i : S × P̃ × Õ≤max(ki) →
{T, F}, j ≤ max(ki) , we define s |=ψp̃i

p̃i(õ1, . . . , õj)

Algorithm 1: Interactive Capability Model Learning

Input : predicates P̃ , agent A
Output : M̃

1 E ← generate execution traces(A)
2 C̃∗ ← generate partial capability descriptions(E)

3 C̃ ′ ← parameterize partial capabilities(C̃∗)

4 M̃ ← generate parameterized capability model(C̃ ′)

5 Set L̃← {pre, eff}
6 for each ⟨L̃, C̃, P̃ ⟩ in M̃ do
7 Generate M̃+, M̃−, M̃∅ by setting P̃ in C̃ at L̃ to

+,−, ∅ in M̃
8 for each pair M̃x, M̃y in {M̃+, M̃−, M̃∅} do
9 q̃ ← generate query(M̃1, M̃2)

10 ϱ̃← generate waypoints(q̃)
11 ϱ← refine waypoints(ϱ̃, P̃)
12 for i in range[0, k − 1] do
13 θ ← ask agent(A, ⟨si, si+1⟩)
14 break if θ = ⊥
15 M̃ ← consistent description(i, s̃i, M̃x, M̃y)

16 return M̃

iff ψp̃i(s, p̃i, õ1, . . . , õj) = T . We define the abstraction
s̃P̃ ,Õ of a state s ∈ S as the set of all literals over P̃ and
Õ that are true in s. S̃P̃ ,Õ denotes the abstract state space
{s̃P̃ ,Õ : s ∈ S}.

We omit subscripts P̃ and Õ unless needed for clarity.
As mentioned, we assume availability of an evaluation func-
tion ψp̃ associated with each predicate p̃ ∈ P̃ . E.g., for a
3-D Blocksworld simulator with objects a and b, and coor-
dinates x, y, and z, “on(a, b) is true exactly for states where
z(a) > z(b), x(a) = x(b), and y(a) = y(b).” As this ex-
ample illustrates, such vocabularies can be inaccurate. The
abstraction function f (Def. 4) can be modeled as a conjunc-
tion of these evaluation functions ψp̃. We now discuss how
we discover capabilities and learn their descriptions.

3 Active Capability Discovery

Our overall approach consists of two main phases:
(1) discovering candidate capabilities and their partial de-
scriptions from a set of execution traces of the agent’s behav-
ior (Sec. 3.1); and (2) completing the descriptions of the can-
didate capabilities discovered in step (1) by asking the agent
queries designed to assess under which conditions it can ex-
ecute those capabilities and what their effects are (Sec. 3.2).
The interactive Capability Model Learning (iCaML) algo-
rithm (Alg. 1) performs both these steps using user inter-
pretable predicates P̃ and the agent A as inputs. We now
explain these two phases in detail.

3.1 Discovering Candidate Partial Capabilities
Generating execution traces As a first step, Alg. 1 col-
lects a set of execution traces E from the agent (line 1).
An execution trace e is a sequence of states of the form
⟨s0, s1, . . . , sn−1, sn⟩, such that ∀j ∈ [1, n] ∃ai ∈ A
aj(sj−1) = sj . To obtain the traces e ∈ E, a set of ran-
dom tasks of the form ⟨sI , sG⟩, where sI , sG ∈ S, are given
to the agent A, and the agent is asked to reach sG from sI .
Intermediate states that the agent goes through form the set
of execution traces E.

Discovering candidate capabilities To discover candi-
date capabilities, we abstract the low-level execution traces
E in terms of the user’s vocabulary (line 2). This abstraction
of a low-level execution trace ⟨s0, s1, . . . , sn−1, sn⟩ gives a
high-level execution trace ⟨s̃0, s̃1, . . . , s̃n−1, s̃n⟩. Since we
do not assume that the user’s vocabulary is precise enough
to discern all the states available to the agent, more than
one low-level state in an execution trace may be abstracted
to a single high-level abstract state in S̃. Hence for some
j ∈ [0, n−1], it is possible that s̃j = s̃j+1. E.g., in Fig.1(a),
the state available to the agent in the simulator expresses
pixel-level details of the game (Fig.1(b)), whereas the user’s
vocabulary can express it only as an abstract state that repre-
sents multiple similar low-level states (Fig.1(c)). Formally,
an abstract execution trace is the longest subsequence of
s̃1, . . . , s̃n such that no two subsequent elements are identi-
cal. We remove the repetitions from the high-level execution
trace to get the abstract execution trace ẽ = ⟨s̃0, . . . , s̃m⟩,
where m ≤ n.

We store each transition s̃i, s̃i+1 in ẽ as a new grounded
candidate capability c̃∗s̃i,s̃i+1

.

Generating partial capability descriptions For each
candidate capability c̃∗s̃i,s̃i+1

, the set of predicates s̃i+1 \ s̃i
is added to the effects of c̃∗s̃i,s̃i+1

in positive form (add
effects); whereas the set s̃i \ s̃i+1 is added to the same
candidate capability’s effects in negative form (delete ef-
fects). As an optimization, in a manner similar to Stern and
Juba (2017), we also store that the predicates true in s̃i can-
not be negative preconditions for this capability, whereas the
predicates false in s̃i cannot be positive preconditions.

Lifting the partial capability descriptions After line 2
of Alg. 1, we get a set of candidate capabilities with their
partial descriptions that are in terms of predicates P̃ in-
stantiated with objects in Õ. For each such grounded par-
tial capability description, the predicates in the precon-
ditions and effects are sorted in some lexicographic or-
der. The choice of ordering is not important as long as
it stays consistent throughout Alg. 1. The objects used in
predicate arguments are assigned unique IDs correspond-
ing to this capability in the order of their appearance in
ordered predicates. These IDs are then used as variables
representing capability parameters. E.g., suppose we have
a grounded partial capability description with a precondi-
tion: (alive ganon), (at link cell6), (at ganon cell5),(next to
ganon). Traversing the predicates in this order, the
objects used in these predicates are given IDs as fol-

lows: {ganon: 1, link: 2, cell6: 3, cell5: 4}. Note that
there is only one assignment per object, hence ganon in
(at ganon cell5) was not given a separate ID. This procedure
is extended to effects while assigning new IDs for any un-
seen objects in the partial capability description. Finally, the
parameterized partial capability description is constructed
by replacing all occurrences of objects in the partial capabil-
ity description with variables corresponding to their unique
IDs.

Combining candidate capabilities Multiple candidate
partial capabilities can be combined if their precondition and
effect conjunctions are unifiable. E.g., for any capability
to match the capability discussed above, it’s precondition
should be in the form: (alive ?1), (at ?2 ?3), (at ?1 ?4),
(next to ?1). Its effects should also be unifiable in terms of
these parameters. The algorithm also keeps track of which
grounded partial candidate capabilities map to each parame-
terized partial capability description. These descriptions are
partial as they are generated using limited execution traces
and may not capture all the preconditions or effects of a ca-
pability. E.g., suppose a capability adds a literal on its exe-
cution. If that literal is already present in the state where the
capability was executed, it will not be captured in the effect
of the capability’s partial description. Hence, we next try
to complete the partial capability descriptions. Note that all
parameterized partial capability descriptions are collectively
used as the parameterized capability model M̃ (line 4).

3.2 Completing Partial Capability Descriptions
To complete the partial capability descriptions M̃ , Alg. 1
generates queries aimed to gain more information about the
conditions under which the capability can be executed and
the state properties that become true or false upon its exe-
cution. These queries give the agent a sequence of states,
called waypoints, to traverse. Based on the agent’s ability
to traverse them, we derive the precondition and effect of
each capability. Alg. 1 iterates through the combinations
of predicates and capabilities generated earlier to determine
how each predicate will appear in each capability’s precon-
dition and effect (line 6). For each combination, it generates
a query as follows.

Active query generation For each combination of predi-
cate, capability, and precondition (or effect), three possible
capability descriptions M+,M−,M∅ are possible, one each
for the predicate appearing in the precondition (or effect) of
the capability in positive, negative, or absent mode, respec-
tively (line 7). As noted when generating partial capability
descriptions in Sec. 3.1, some of the models will not be con-
sidered if we know that a form is not possible for a particular
predicate. The algorithm iteratively picks two such models
Mx,My from M+,M−,M∅ (line 8) and generates a query
q̃ in the form of a state s̃0 and a capability sequence π̃ such
that the result of executing the sequence π̃ on s̃0 is different
in Mx and My (line 9). We use the agent interrogation al-
gorithm (AIA), from our prior work Verma, Marpally, and
Srivastava (2021) (henceforth referred to as VMS21). For
their process, AIA reduces query generation to a planning

problem. The resulting query q̃ is of the form ⟨s̃0, π̃⟩, asking
the model (or an agent) about the length of the plan π̃ that it
can successfully execute when starting from state s̃0. Here
plan π̃ is a sequence of capabilities ⟨c̃∗1, . . . , c̃∗n⟩ grounded
with objects in Õ.

Generating waypoints from queries The queries de-
scribed above cannot be directly posed to an agent, as the
plan π̃ is in terms of high-level capabilities c̃∗i ∈ C̃∗, which
the agent will not be able to comprehend. Additionally, these
high-level capabilities cannot be converted directly to low-
level actions, as each capability may correspond to a dif-
ferent sequence of low-level actions depending on the state
in which it is executed. Hence, we pose the queries to the
agent in the form of high-level state transitions induced by
the capabilities in the query’s capability sequence.

To accomplish this, Alg. 1 converts the query q̃ to a se-
quence of waypoints ϱ̃ = ⟨s̃0, . . . , s̃n⟩. Starting from the
initial state s̃0, these are generated by applying the capa-
bility c̃∗i , for i ∈ [1, n], in the state s̃i−1 according to
the partial capability description of c̃∗i . Note that the way-
points ϱ̃ cannot be presented to the agent as the agent may
not know the high-level vocabulary. Hence these high-
level waypoints must be refined into the low-level waypoints
ϱ = ⟨s0, . . . , sn⟩ (with each si similar to state shown in
Fig. 1(b)) that agent understands.

Alg. 1 first converts the high-level waypoints ϱ̃ to a se-
quence of low-level waypoints ϱ = ⟨s0, . . . , sn⟩ using the
predicate definitions (line 11). Then each consecutive pair
of states ⟨si, si+1⟩ is given sequentially to the agent as a
state reachability query asking if it can reach from state si
to si+1 using its internal black-box policy (line 13).

Updating partial models based on agent responses Us-
ing its internal planning mechanism and the simulator, the
agent attempts to reach from state si to si+1. If it succeeds,
the response to the query is recorded as true; if it fails, the
response is recorded as false. The algorithm keeps track of
the waypoints that were successfully traversed. Based on
the waypoint pairs that the agent was able to traverse, we
discard the capability descriptions among Mx and My that
are not consistent with the agent’s response (line 15).

E.g., suppose the algorithm is trying to determine how
the predicate (alive ?monster1) should appear in the precon-
dition of capability c4 shown in Fig. 1(d). Now the two
possible capability descriptions M1 and M2 that Alg. 1 is
considering in line 6 are M+ and M−, corresponding to
(alive ?monster1) being in c4’s precondition in positive and
negative form, respectively. The algorithm will generate
query with its corresponding waypoints ϱ̃ = ⟨s̃0, s̃1⟩, where
s̃0 will correspond to the state shown in Fig 1(a), and s̃1 will
be s̃0 without Ganon. Now the agent uses its own internal
mechanism to try to reach s̃1 from s̃0 and succeeds. Since
this is not possible according to M−, M− will be discarded.

We now define and prove the theoretical properties of
iCaML algorithm. To do this, we use two key properties
of VMS21 relevant to this work: (1) if there exists a dis-
tinguishing query for two models then it will be generated
(Thm. 1 in VMS21); and (2) the algorithm will not dis-
card any model that is consistent with the agent (Thm. 2 in

VMS21). Interested readers can refer to VMS21 for further
details.

3.3 Formal Analysis
Alg. 1 has two main desirable properties: (1) the partial ca-
pability model (that is maintained as M̃) is always maxi-
mally consistent, i.e, adding any more literals into it would
be unsupported by the execution traces that we obtain; and
(2) the final parameterized capability is complete in the limit
of infinite execution traces given to Alg. 1. We first define
these concepts and then formalize the results under Thm. 1
and Thm. 2.

Definition 5. Let e = ⟨s0, . . . , sn⟩ be an execution
trace with a corresponding abstract execution trace ẽ =
⟨s̃0, . . . , s̃m⟩, where m ≤ n. A parameterized capabil-
ity model M̃ = ⟨P̃ , C̃, Õ⟩ is consistent with E iff ∀i ∈
[0,m − 1] ∃c̃∗ ∈ C̃∗ s̃i+1 = c̃∗(s̃i), where C̃∗ is a set of
grounded capabilities that can be generated by instantiating
the parameters of capabilities c̃ ∈ C̃ with objects in Õ.

We extend this terminology to say that a capability model
is consistent with a set of execution traces E iff it is con-
sistent with every trace in E. This notion of consistency
captures completeness as a parameterized capability model
M̃ that is consistent with a set of execution traces E, is also
complete w.r.t. E. We next define a stronger notion of com-
pleteness that our algorithm provides in the form of maximal
consistency. This helps to assess the succinctness of a capa-
bility model with a set of execution traces E.

Definition 6. LetE be a set of execution traces, and Λ be the
set of possible agents that can generate all execution traces
in E. A parameterized capability model M̃ = ⟨P̃ , C̃, Õ⟩
is maximally consistent with a set of execution traces E iff
(i) M̃ is consistent with E, and (ii) adding any predicate as
positive or negative precondition or effect of a capability in
M̃ makes it inconsistent with at least one execution trace
that can be generated by at least one agent A# ∈ Λ.

An abstraction satisfies local connectivity iff ∀s̃ ∀si, sj ∈
f−1(s̃) there exists a sequence of primitive actions
⟨ai, . . . , an⟩ such that an(an−1 . . . (a1(si)) . . .) = sj . We
use this to show that the parameterized capability model
learned by Alg. 1 is maximally consistent.

Theorem 1. Let A = ⟨S,A, T ⟩ be an agent operating in a
deterministic, fully observable, and stationary environment
with a state space S using a set of primitive actionsA. Given
an input vocabulary P̃ , and the set of execution traces E
generated by A, if local connectivity holds, then the capa-
bility model M̃ maintained by Alg. 1 is consistent with the
set of execution traces E.

Proof. We show that given the set of all execution traces E,
the parameterized capability model M̃ maintained by Alg. 1
is consistent with E, i.e., for every high-level transition s̃, s̃′
corresponding to a transition in E, there exists a capabil-
ity c̃ which has a grounding c̃∗ such that c̃∗(s) = s̃′. We
prove this by contradiction. The partial capability model

M̃ is initially generated using observed transitions s̃, s̃′ cor-
responding to the transitions in E as grounded capabilities
c̃∗s̃,s̃′ (lines 2 to 4 in Alg. 1). So the model M̃ is consistent
with the set of traces to start with. At each step, Alg. 1 adds
a new literal l to a capability c̃ in M̃ such that adding l keeps
M̃ consistent with the agentA (Thm. 2 from VMS21). Now
consider that adding l to M̃ makes it inconsistent with an
execution trace in E, i.e., there must exist a transition s̃1, s̃2
such that no capability c̃∗ ∈ C̃∗ corresponds to it.

Consider the version of c̃1 corresponding to c∗s̃1,s̃2 that
was modified by Alg. 1. We show that modifications in-
consistent with this transition are not possible under the as-
sumption that the agent’s capabilities can be expressed using
the input vocabulary.
Case 1: Suppose Alg. 1 added a literal l in the precondition
of c̃1 that was not true in s̃1. Thm. 2 in VMS21 implies that
absent and negated forms of l were inconsistent with execu-
tions of c̃1 using the same agent that generated E. In other
words, the agent sometimes requires l as a precondition to
execute c̃1, even though l was not a part of s̃1. This con-
tradicts the assumption that c̃1 is expressible using the input
vocabulary in the form of Def. 3.
Case 2: Suppose Alg. 1 added a literal l in the effect of c̃1
that was not present in s̃2. This implies that the negation
and absence of l in the result of c̃1 were inconsistent with
the agent’s execution of c̃1 in query-responses generated by
Alg. 1. A similar contradiction about the assumption of ex-
pressiveness follows.

Hence, the capability model M̃ maintained by Alg. 1 is
consistent with the set of execution traces E.

Theorem 2. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable, and stationary environ-
ment with a state-space S using a set of primitive actions A.
Given an input vocabulary P̃ , and the set of execution traces
E generated by A, if local connectivity holds, then the ca-
pability model M̃ returned by Alg. 1 is maximally consistent
with the set of execution traces E.

Proof. We will prove the two conditions for maximal con-
sistency separately. The first condition is that the model M̃
returned by Alg. 1 is consistent withE follows directly from
Thm. 1. Since the model maintained by Alg. 1 at each step
is consistent with E, hence the same model returned after
the last iteration is also consistent with E.

Next, we show that adding any predicate as a positive or
negative precondition or effect of a capability in M̃ returned
by Alg. 1 makes it inconsistent with at least one execution
trace that can be generated by at least one agent A# ∈ Λ,
where Λ is the set of possible agents that can generate all
execution traces in E. We prove this by contradiction. Note
that a literal is not added by Alg. 1 to an action’s precon-
dition (or effect) only if (1) in the observed traces, it was
not present in the state where (immediately after) that action
was executed; or (2) adding it in the precondition (or effect)
of an action resulted in a response to a query that was incon-
sistent with that of the agent. Also, note that a predicate cor-
responding to a literal is always added to the model in some

form in each precondition (or effect). Suppose a literal l that
was not added by Alg. 1 is added to M̃ in precondition (or
effect) of a capability c̃ without making it inconsistent with
the agent. Since a predicate p corresponding to this literal l
is already present in c̃, this implies that the form of the pred-
icate p added by Alg. 1 is incorrect. But this is not possible
as shown by Thm. 1 and Thm. 2 of VMS21. Hence this is
not possible and adding an additional literal in any form to
an action’s precondition or effect would make it inconsis-
tent with the agent. This means that it also makes the model
inconsistent with at least one agent A# ∈ Λ.

Next, we formalize the notion of downward refinability,
that the discovered capabilities are indeed within the agent’s
scope. In this work, refinability is similar to the notion
of forall-exists abstractions (Srivastava, Russell, and Pinto
2016) for deterministic systems. Recall the notion of ab-
straction functions (Def. 4).

Definition 7. Let M̃ = ⟨P̃ , C̃, Õ⟩ be a capability model
with S̃, the induced state space over P̃ , Õ using an abstrac-
tion function f , for an agent A = ⟨S,A, T ⟩; and C̃∗ be a
set of grounded capabilities that can be generated by instan-
tiating the arguments of capabilities c̃ ∈ C̃ with objects in
Õ. A capability c̃∗ ∈ C̃∗ is realizable w.r.t. A iff ∀s̃ ∈ S̃,
if s̃ |= pre(c̃∗) then ∀s ∈ f−1(s̃) ∃a1, . . . , an ∈ A :
an(an−1 . . . (a1(s)) . . .) ∈ c̃∗(s̃). The model M is realiz-
able w.r.t. A iff all capabilities c̃∗ ∈ C̃∗ are realizable.

In these terms, discovered capabilities are more likely to
be useful if they are accurate in the sense that they are con-
sistent with execution traces and realizable, i.e., true repre-
sentations of what the agent can do. Realizability captures
the soundness of the model wrt the execution of the capabil-
ities. We now show that the parameterized capability model
that we learn is realizable.

Theorem 3. Let P̃ be a set of predicates P̃ , A = ⟨S,A, T ⟩
be an agent with a deterministic transition system T . If a
high-level model is expressible deterministically using the
predicates P̃ , and local connectivity is ensured, then the pa-
rameterized capability model M̃ learned by Alg. 1 is realiz-
able.

Proof. We will prove that for all capabilities in C̃ learned
as part of the parameterized capability model M̃ , for all
groundings C̃∗, if the capability is executed in an abstract
state s̃ such that s̃ |= pre(c̃∗) then there exists a sequence
of low-level states that the agent can traverse to reach a state
s̃′ ∈ c̃∗(s̃).

We prove this by cases. Consider a capability c̃ ∈ C̃
whose description is learned using Alg. 1 . Using Thm. 1,
the precondition and effect of c̃ will be consistent with E
generated by the agent. Now consider a grounded capabil-
ity c̃∗ corresponding to the capability c̃. There are only two
cases possible: (1) either c̃∗ appeared in the observed traces
or was executed successfully by the agent in response to one
of the queries posed to the agent; or (2) it was not present in
either. We prove each case separately.
Case 1: There exists a set of low-level states s and s′ such

that c̃∗(s̃) = s̃′, where s̃ = f(s) and s̃′ = f(s′). Now due
to local connectivity, all states in f−1(s) are connected with
each other and same is true for all states in f−1(s′). Hence
the agent can traverse from any state in f−1(s) to any state
in f−1(s′) on executing the capability c̃∗. This makes the
capability c̃∗ realizable.
Case 2: Since c̃∗ was not observed directly and the only
way capabilities are added to M̃ is if they are lifted forms
of capabilities identified from observation traces E, c̃∗ must
be a grounding of the lifted form c̃1 of a capability c̃∗1 that
is of the type considered in case 1. Alg. 1 constructs pre-
condition and effect of c̃1 while ensuring consistency with
query responses and observations under the assumption that
the capability model is expressible as in Def. 3. When this
assumption holds, the effect or precondition of a capabil-
ity can only depend on the vocabulary of available predi-
cates, which are considered exhaustively (hierarchically) by
Alg. 1. This implies that there must be a path from a concrete
state s in the grounding corresponding to c̃1’s precondition
to a concrete state s′ that satisfies the effects of grounding
of c̃1’s effects. By local connectivity, this extends to all con-
crete states in the same abstract state as s̃ corresponding to s.

Hence if a high-level model is expressible deterministi-
cally using the predicates P̃ , and local connectivity is en-
sured, then the parameterized capability model M̃ learned
by Alg. 1 is realizable.

Note that here expressibility of a high-level model refers
to the class of models of the form defined in Def. 3. To-
gether, the notions of maximal consistency and realizability
establish the completeness and soundness of our approach
wrt a set of execution traces E. Note that this approach will
also work when we have access to a stream of execution
traces E being collected at random, independent of our ac-
tive querying mechanism. We next show that in the limit of
infinite randomly generated execution traces, our approach
will capture all possible agent capabilities with probability
1. Here, capturing all possible agent capabilities in a learned
model M̃ = ⟨P̃ , C̃, Õ⟩ means that if the agent can go from
s̃i to s̃j , then one of the capabilities in C̃ will be instantiable
to result in s̃j when executed from s̃i.

Theorem 4. Let P̃ be a set of predicates, A = ⟨S,A, T ⟩ be
an agent with a deterministic transition system T . Suppose
random samples of agent behavior in the form of execution
traces E are coming from a distribution that assigns non-
zero probability to at least one transition corresponding to
each ground capability (c̃∗s̃i,s̃j , s̃i, s̃j ⊆ P̃). If a high-level
model is expressible deterministically using the predicates
P̃ and local connectivity holds, then in the limit of infinite
execution traces E, the probability of discovering all capa-
bilities c̃ ∈ C̃ expressible using the predicates P̃ is 1.

Proof. Consider every possible abstract transition that the
agent can make. There are finite (let’s consider L) such
transitions possible given the predicate vocabulary P̃ and
a fixed set of objects Õ. Now we are getting random ex-
ecution traces E from a distribution that assigns non-zero
probability to at least one transition corresponding to each

(a) (b)

(c) (d)

Figure 2: GVGAI’s domains; (a) Zelda, (b) Cook-Me-Pasta, (c)
Escape, and (d) Snowman.

ground capability (c̃∗s̃i,s̃j). This means that the probability of
not observing this finite set of cardinality L will reduce with
each successive collection of L execution traces. Hence we
will eventually observe at least one transition correspond-
ing to each ground capability (c̃∗s̃i,s̃j). Then as shown in
Thm. 1, we will discover the capability c̃ corresponding to
the ground transition c̃∗s̃i,s̃j with probability 1.

4 Empirical Evaluation
We implemented Alg. 1 in Python to empirically verify its
effectiveness.1 To show that our approach can work with dif-
ferent internal agent implementations, we evaluated Alg. 1
with two broad categories of input test agents: Policy agents
can use (possibly learned) black-box policies to plan and
to respond to state reachability queries. We used policy
agents with hand-coded policies for this evaluation. Search
agents respond to the state reachability queries using arbi-
trary search algorithms. We used search agents that use A∗

search (Hart, Nilsson, and Raphael 1968). We now describe
the setup of our experiments used for evaluation.

4.1 Experimental Setup
Our test agents use the General Video Game Artificial In-
telligence framework (Perez-Liebana et al. 2016; Perez-
Liebana et al. 2019). Domains in GVGAI are two-
dimensional ATARI-like games defined using the Video
Game Description Language PyVGDL (Schaul 2013). We
performed experiments on four such game domains – Zelda,
Cook-Me-Pasta, Escape, and Snowman (Fig. 2). All these
domains require the agent to navigate in a grid-based envi-
ronment and complete a set of tasks (in some partial order)
to complete the game. More details about these domains and
the input user vocabularies are available in the extended ver-
sion of the paper (Verma, Marpally, and Srivastava 2022).

1Code: https://github.com/AAIR-lab/iCaML

Search Agent Policy Agent
Search Agent Policy Agent

Snowman

Escape

Cook-Me-Pasta

Zelda

N
um

be
r

of
 Q

ue
ri
es

Ti
m

e
pe

r
Q

ue
ry

 (
m

s)

Grid Size

#Queries:
Time:

Figure 3: Performance comparison of search-based agents and
policy-based agents in terms of the number of queries asked and
time taken per query when increasing the grid size (number of cells
in the grid) in the four GVGAI domains.

Since the complete list of an agent’s capabilities may be ir-
relevant to a user’s current needs, w.l.o.g, our implementa-
tion supports an input including sets of formulas represent-
ing the properties that may be of interest to the user. This set
can be the set of all grounded predicates in the user’s concept
vocabulary. We also consider object types to be a subset of
the unary predicates in the vocabulary and assume that each
object has exactly one type. These types are used and dis-
covered in capability like any other predicate. In addition,
they are used in creating parameterized capability parame-
ters as shown in Fig. 1(d).

For each domain, and for each grid size in that domain,
we create a random game instance with the goal of achieving
one of the user’s specified properties of interest. To gener-
ate these instances, the number of obstacles in all domains,
except Escape, is set to 20% of the total cells in the grid,
whereas all other objects are generated randomly. We use
the solution to that instance to generate the execution trace
that is used in lines 1-2 of Alg. 1. These solutions are not
always optimal. All experiments are run on 5.0 GHz Intel i9
CPUs with 64 GB RAM running Ubuntu 18.04.

As shown in Sec.3.3, Alg. 1 is guaranteed to compute ca-
pability descriptions that are correct in the sense that they are
consistent with the execution traces, and refinable and exe-
cutable with respect to the true capabilities of the agent. We
now present the main conclusions of our empirical analysis.

We evaluated our algorithm’s performance along two as-
pects; (i) how the performance of our approach changes with
respect to the size of the problem; and (ii) how its perfor-
mance differs for search-based vs policy-based agents.

4.2 Empirical Results
Scalability analysis We increase the size of each domain
to analyze its effect on the performance of the search and
policy agents. Fig. 3 shows the graphs for the experimental
runs on the four domains. In all four domains, for both kinds
of agents, the number of queries increases as we increase the
grid size. The increasing number of queries is an expected

Figure 4: Data from behavior analysis shows that using computed
capability descriptions took lesser time and yielded more accurate
results. See Sec.4.3 for details.

behavior and this is also clear in approaches that use passive
observations of agent behavior (Yang, Wu, and Jiang 2007;
Aineto, Celorrio, and Onaindia 2019).

Agent type analysis The number of queries required by
the policy agent is higher than that of the search agent in
almost all cases. This is because a large number of state
reachability queries fail on the policy agent as the sequence
of waypoints in these queries does not always align with the
policy of the agent. However, the time per query is lesser for
the policy agents as they can answer the state reachability
queries by following their policy, whereas the search agents
perform an exhaustive search of the state space for every
such query.

4.3 User Study
We conducted a user study to evaluate the utility of the capa-
bility descriptions discovered and computed by Alg. 1. In-
tuitively, our notion of interpretability matches that of com-
mon English and its use in AI literature, e.g., as enunciated
by Doshi-Velez and Kim (2018): “the ability to explain or to
present in understandable terms to a human.” We evaluate
this through the following operational hypothesis:
H1. The discovered capabilities make it easier for users to
analyze and predict the outcome of the agent’s possible be-
haviors.

We designed the following study to evaluate H1.

Behavior analysis study This study compares the pre-
dictability and analyzability of agent behavior in terms of the
agent’s low-level actions and high-level capabilities. Each
user is explained the rules of a Zelda-like game. One group
of users – called the primitive action group – are presented
with text descriptions of the agent’s primitive actions, while
the users in the other group – called the capability group –
are presented with a text description of the six learned ca-
pabilities. The capability group users are asked to choose a
short summarization for each capability description, out of
the eight possible summarizations that we provide, whereas
the primitive action group users are asked to choose a short
summarization for each primitive action description, out of
the five possible summarizations that we provide. Then each
user is given the same 5 questions in order. Each question
contains two game-state images; start and end state. The
user is asked what sequence of actions or capabilities that

the agent should execute to reach the end state from the start
state. Each question has 5 possible options for the user to
choose from, and these options differ depending on their
group. We then collect the data about the accuracy of the
answers, and the time taken to answer each question.

Study design 108 participants were recruited from Ama-
zon Mechanical Turk and randomly divided into two groups
of 54 each. Each user was provided with a survey on
Qualtrics (Qualtrics 2005) that explained the rules of GV-
GAI’s Zelda game. We used screeners (Kennedy et al. 2020;
Arndt et al. 2021) to ensure quality of the data collected,
and discarded 23 responses. The results are based on the
responses of 41 and 43 users in the primitive action and ca-
pability group, respectively.

Results The results of the behavior analysis study are
shown in (Fig. 4) To evaluate the statistical significance
(p-value) of the difference in the mean of the time taken by
the two groups, we used Student’s t-test (Student 1908). The
results indicate that the test results were statistically signifi-
cant with p-values less than 0.05 for all five questions. Also,
the users took less time to answer questions and they got
more responses correct when using the capabilities as com-
pared to using primitive actions. This validates H1 that the
discovered capabilities made it easier for the users to analyze
and predict the agent’s behavior correctly. Detailed informa-
tion about the user study is available in the extended version
of the paper (Verma, Marpally, and Srivastava 2022).

5 Related Work
High-level skills from input options Given a set of
options encoding skills as input, Konidaris, Kaelbling,
and Lozano-Perez (2018) and James, Rosman, and
Konidaris (2020) propose methods for learning high-
level propositional models of options representing various
“skills.” They assume access to predefined options and learn
the high-level symbols that describe those options at the
high-level. While they use options or skills as inputs to learn
models defining when those skills will be useful in terms
of auto-generated symbols (for which explanatory seman-
tics could be derived in a post-hoc fashion), our approach
uses user-provided interpretable concepts as apriori inputs
to learn agent capabilities: high-level actions as well as their
interpretable descriptions in terms of the input vocabulary.

Learning symbolic models using physics simulators
Multiple approaches learn different kinds of symbolic mod-
els of the functionality of ATARI or physics-based simu-
lators using methods like conjunctions of binary input fea-
tures (Kansky et al. 2017), graph neural networks (Battaglia
et al. 2016; Cranmer et al. 2020), CNNs (Agrawal et al.
2016; Fragkiadaki et al. 2016), etc. Some methods create
interpretable descriptions of reinforcement learning policies
using trees (Liu et al. 2018) or specialized programming lan-
guages (Verma et al. 2018). These approaches solve the or-
thogonal problem of learning the functionality of an agent
that could help a user understand how an agent would solve
a problem, whereas we focus on learning capabilities of the

agent that could help a user understand and answer what
type of problems it could solve.

Action model learning The planning community has also
worked on learning STRIPS-like action models of agent
functionality from observations of its behavior (Gil 1994;
Yang, Wu, and Jiang 2007; Cresswell, McCluskey, and West
2009; Zhuo and Kambhampati 2013; Stern and Juba 2017;
Aineto, Celorrio, and Onaindia 2019; Bonet and Geffner
2020). Jiménez et al. (2012) and Arora et al. (2018) present
a comprehensive review of such approaches. These methods
work with broad assumptions that the agent model is inter-
nally expressed in the same vocabulary as the user’s (Gil
1994; Weber, Morwood, and Bryce 2011; Juba, Le, and
Stern 2021), or at a similar level of abstraction (Mehta, Tade-
palli, and Fern 2011; Verma, Marpally, and Srivastava 2021;
Nayyar, Verma, and Srivastava 2022). Additionally, such
methods have as input a given set of predicates in terms of
which they learn the functionality descriptions of the agent.

High-level actions Works like Madumal et al. (2020) ex-
plain an agent’s policy in terms of high-level actions but they
assume that high-level actions are a part of the input whereas
our approach discovers these actions. There is an orthogonal
thread of research on using high-level actions in AI planning
as tasks, and learning low-level policies for each of those
tasks (Yang et al. 2018; Lyu et al. 2019; Illanes et al. 2020;
Kokel et al. 2021). These works assume the high-level ac-
tions as input and learn the corresponding low-level policies.

As compared to the above two classes of methods, our
work focuses on solving the harder problem of discover-
ing the capabilities of the agent behavior resulting from its
planning/learning algorithms and learning the descriptions
of these capabilities.

6 Conclusion

We presented a novel approach for learning the capability
description of an AI system in terms of user-interpretable
concepts by combining information from passive execution
traces and active query answering. Our approach works for
settings where the user’s conceptual vocabulary is impre-
cise and cannot directly express the agent’s capabilities. Our
empirical analysis showed that for the agents that internally
use black-box deterministic policies, or search techniques,
we can successfully discover the capabilities and their de-
scriptions. Extending this approach for partially observable
settings and relaxing the various assumptions we made are
some of the promising future directions for this work.

Acknowledgements

We thank Nancy Cooke, Akkamahadevi Hanni, and Syd-
ney Wallace for their help with the user study. We also
thank anonymous reviewers for their helpful feedback on
the paper. This work was supported in part by the NSF un-
der grants IIS 1942856, IIS 1909370, and the ONR grant
N00014-21-1-2045.

References
Agrawal, P.; Nair, A. V.; Abbeel, P.; Malik, J.; and Levine,
S. 2016. Learning to Poke by Poking: Experiential Learning
of Intuitive Physics. In Proc. NIPS.
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learn-
ing Action Models With Minimal Observability. Artificial
Intelligence 275:104–137.
Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Främling,
K. 2019. Explainable Agents and Robots: Results from a
Systematic Literature Review. In Proc. AAMAS.
Arndt, A. D.; Ford, J. B.; Babin, B. J.; and Luong, V.
2021. Collecting Samples from Online Services: How to
Use Screeners to Improve Data Quality. International Jour-
nal of Research in Marketing.
Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018. A Review of Learning Planning Action Models.
The Knowledge Engineering Review 33:E20.
Bäckström, C., and Jonsson, P. 2013. Bridging the Gap
Between Refinement and Heuristics in Abstraction. In Proc.
IJCAI.
Barredo Arrieta, A.; Dı́az-Rodrı́guez, N.; Del Ser, J.; Ben-
netot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez,
S.; Molina, D.; Benjamins, R.; Chatila, R.; and Herrera, F.
2020. Explainable Artificial Intelligence (XAI): Concepts,
Taxonomies, Opportunities and Challenges toward Respon-
sible AI. Information Fusion 58:82–115.
Battaglia, P.; Pascanu, R.; Lai, M.; Jimenez Rezende, D.;
and Kavukcuoglu, K. 2016. Interaction Networks for Learn-
ing about Objects, Relations and Physics. In Proc. NIPS.
Bonet, B., and Geffner, H. 2020. Learning First-Order Sym-
bolic Representations for Planning from the Structure of the
State Space. In Proc. ECAI.
Camacho, A., and McIlraith, S. A. 2019. Learning inter-
pretable models expressed in linear temporal logic. In Proc.
ICAPS.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proc. IJCAI.
Cranmer, M.; Sanchez Gonzalez, A.; Battaglia, P.; Xu, R.;
Cranmer, K.; Spergel, D.; and Ho, S. 2020. Discovering
Symbolic Models from Deep Learning with Inductive Bi-
ases. In Proc. NeurIPS.
Cresswell, S.; McCluskey, T.; and West, M. 2009. Ac-
quisition of Object-Centred Domain Models from Planning
Examples. In Proc. ICAPS.
Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.;
Shanmugam, K.; and Das, P. 2018. Explanations based on
the Missing: Towards Contrastive Explanations with Perti-
nent Negatives. In Proc. NeurIPS.
Doshi-Velez, F., and Kim, B. 2018. Considerations for Eval-
uation and Generalization in Interpretable Machine Learn-
ing. Springer International Publishing. 3–17.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 2(3-4):189–208.

Fragkiadaki, K.; Agrawal, P.; Levine, S.; and Malik, J. 2016.
Learning Visual Predictive Models of Physics for Playing
Billiards. In Proc. ICLR.
Gil, Y. 1994. Learning by Experimentation: Incremental Re-
finement of Incomplete Planning Domains. In Proc. ICML.
Giunchiglia, F., and Walsh, T. 1992. A Theory of Abstrac-
tion. Artificial Intelligence 57(2-3):323–389.
Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2018. Vi-
sualizing and Understanding Atari Agents. In Proc. ICML.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M.; Haslum, P.; Hoffmann, J.; et al. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Proc. ICAPS.
Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020.
Symbolic Plans as High-Level Instructions for Reinforce-
ment Learning. In Proc. ICAPS.
James, S.; Rosman, B.; and Konidaris, G. 2020. Learning
Portable Representations for High-Level Planning. In Proc.
ICML.
Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A Review of Machine Learning for
Automated Planning. The Knowledge Engineering Review
27(4):433–467.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In Proc. KR.
Kansky, K.; Silver, T.; Mély, D. A.; Eldawy, M.; Lázaro-
Gredilla, M.; Lou, X.; Dorfman, N.; Sidor, S.; Phoenix, S.;
and George, D. 2017. Schema Networks: Zero-shot Trans-
fer with a Generative Causal Model of Intuitive Physics. In
Proc. ICML.
Kennedy, R.; Clifford, S.; Burleigh, T.; Waggoner, P. D.;
Jewell, R.; and Winter, N. J. G. 2020. The Shape of and
Solutions to the MTurk Quality Crisis. Political Science Re-
search and Methods 8(4):614–629.
Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.;
Viegas, F.; and Sayres, R. 2018. Interpretability Beyond
Feature Attribution: Quantitative Testing with Concept Ac-
tivation Vectors (TCAV). In Proc. ICML.
Kokel, H.; Manoharan, A.; Natarajan, S.; Ravindran, B.; and
Tadepalli, P. 2021. RePReL: Integrating Relational Planning
and Reinforcement Learning for Effective Abstraction. In
Proc. ICAPS.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. Journal of Artificial
Intelligence Research 61(1):215–289.
Liu, G.; Schulte, O.; Zhu, W.; and Li, Q. 2018. Toward Inter-
pretable Deep Reinforcement Learning with Linear Model
U-Trees. In Proc. ECML PKDD.
Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. SDRL:
Interpretable and Data-Efficient Deep Reinforcement Learn-
ing Leveraging Symbolic Planning. In Proc. AAAI.

Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F.
2020. Explainable Reinforcement Learning Through a
Causal Lens. In Proc. AAAI.
Malle, B. F. 2004. How the Mind Explains Behavior: Folk
Explanations, Meaning, and Social Interaction. The MIT
Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D. S.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language. Tech-
nical Report CVC TR-98-003/DCS TR-1165, Yale Center
for Comp. Vision and Control.
Mehta, N.; Tadepalli, P.; and Fern, A. 2011. Autonomous
Learning of Action Models for Planning. In Proc. NIPS.
Miller, T. 2019. Explanation in Artificial Intelligence:
Insights from the Social Sciences. Artificial Intelligence
267:1–38.
Mou, Y., and Xu, K. 2017. The Media Inequality: Compar-
ing the Initial Human-Human and Human-AI Social Inter-
actions. Computers in Human Behavior 72:432–440.
Nayyar, R. K.; Verma, P.; and Srivastava, S. 2022. Differen-
tial Assessment of Black-Box AI Agents. In Proc. AAAI.
Paulus, R.; Xiong, C.; and Socher, R. 2018. A Deep Re-
inforced Model for Abstractive Summarization. In Proc.
ICML.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
and Lucas, S. 2016. General Video Game AI: Competition,
Challenges and Opportunities. In Proc. AAAI.
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; To-
gelius, J.; and Lucas, S. M. 2019. General Video Game
AI: A Multitrack Framework for Evaluating Agents, Games,
and Content Generation Algorithms. IEEE Transactions on
Games 11(3):195–214.
Popov, I.; Heess, N.; Lillicrap, T.; Hafner, R.; Barth-
Maron, G.; Vecerik, M.; Lampe, T.; Tassa, Y.; Erez, T.;
and Riedmiller, M. 2017. Data-efficient Deep Reinforce-
ment Learning for Dexterous Manipulation. arXiv preprint
arXiv:1704.03073.
Qualtrics. 2005. Qualtrics XM. https://www.qualtrics.com/.
Accessed: 2022-05-10.
Randazzo, R. 2018. What went wrong with Uber’s Volvo in
fatal crash? Experts shocked by technology failure. The AZ
Republic.
Russell, S. J. 1997. Rationality and Intelligence. Artificial
Intelligence 94(1-2):57–77.
Sacerdoti, E. D. 1974. Planning in a Hierarchy of Abstrac-
tion Spaces. Artificial Intelligence 5(2):115–135.
Schaul, T. 2013. A Video Game Description Language for
Model-based or Interactive Learning. In 2013 IEEE Confer-
ence on Computational Intelligence in Games (CIG).
Sreedharan, S.; Soni, U.; Verma, M.; Srivastava, S.; and
Kambhampati, S. 2022. Bridging the Gap: Providing
Post-Hoc Symbolic Explanations for Sequential Decision-
Making Problems with Inscrutable Representations. In Proc.
ICLR.

Srivastava, S.; Russell, S.; and Pinto, A. 2016. Metaphysics
of Planning Domain Descriptions. In Proc. AAAI.
Stern, R., and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
Proc. IJCAI.
Student. 1908. The Probable Error of a Mean. Biometrika
6(1):1–25.
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaudhuri,
S. 2018. Programmatically Interpretable Reinforcement
Learning. In Proc. ICML.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking
the Right Questions: Learning Interpretable Action Models
Through Query Answering. In Proc. AAAI.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2022. Discov-
ering User-Interpretable Capabilities of Black-Box Planning
Agents. CoRR abs/2107.13668.
Weber, C.; Morwood, D.; and Bryce, D. 2011. Goal-
Directed Knowledge Acquisition. In ICML 2011 Workshop
on Planning and Acting with Uncertain Models.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. Peorl:
Integrating Symbolic Planning and Hierarchical Reinforce-
ment Learning for Robust Decision-Making. In Proc. IJCAI.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning Action
Models from Plan Examples Using Weighted MAX-SAT.
Artificial Intelligence 171(2-3):107–143.
Zhuo, H. H., and Kambhampati, S. 2013. Action-Model
Acquisition from Noisy Plan Traces. In Proc. IJCAI.

https://www.qualtrics.com/

	Introduction
	Formal Framework
	Abstraction
	Capability Descriptions

	Active Capability Discovery
	Discovering Candidate Partial Capabilities
	Completing Partial Capability Descriptions
	Formal Analysis

	Empirical Evaluation
	Experimental Setup
	Empirical Results
	User Study

	Related Work
	Conclusion

