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Abstract

Several approaches have been developed for answering users’
specific questions about AI behavior and for assessing their
core functionality in terms of primitive executable actions.
However, the problem of summarizing an AI agent’s broad
capabilities for a user has received little research attention.
This is aggravated by the fact that users may not know which
questions to ask in order to understand the limits and capabil-
ities of a system. This paper presents an algorithm for discov-
ering from scratch the suite of high-level “capabilities” that
an AI system with arbitrary internal planning algorithms/poli-
cies can perform. It computes conditions describing the appli-
cability and effects of these capabilities in user-interpretable
terms. Starting from a set of user-interpretable state proper-
ties, an AI agent, and a simulator that the agent can interact
with, using arbitrary decision-making paradigms over primi-
tive operations (unknown to the user), our algorithm returns
a set of high-level capabilities with capability descriptions in
the user’s vocabulary. Empirical evaluation on several game-
based scenarios shows that this approach efficiently learns in-
terpretable descriptions of various types of AI agents in de-
terministic, fully observable settings. User studies show that
such interpretable descriptions are easier to understand and
reason with than the agent’s primitive actions.

1 Introduction
AI systems are rapidly developing to an extent where they
can be expected to be used by non-experts who may not un-
derstand how they work or what they can and cannot do.
Ongoing research on the topic focuses on the significant
problem of how to answer such a user’s questions about the
system’s behavior (Anjomshoae et al. 2019; Barredo Arri-
eta et al. 2020; Chakraborti et al. 2017; Dhurandhar et al.
2018). However, most non-experts hesitate to ask questions
about new AI tools (Mou et al. 2017) and quite often do not
know which questions to ask in order to assess the safe limits
and capabilities of an AI system. This problem is aggravated
in situations where an AI system can carry out planning or
sequential decision making and the user’s conceptual vocab-
ulary may not be rich enough to express simulator-based
models of AI systems and their solution policies. Lack of
understanding about the limits of an imperfect system can
result in unproductive usage or, in the worst-case, serious
accidents (Randazzo 2018). This, in turn, limits the adop-
tion and productivity of the AI systems.

This work presents a new approach for learning user-
interpretable expressions of a black-box AI system’s capa-
bilities. The AI system may use arbitrary internal models,
representations, and processes for computing solutions to
user-assigned tasks. This paradigm captures a wide vari-
ety of AI agents, including ATARI-game playing agents that
may use a deep-learned Q function for selecting actions, as
well as agents that carry out variants of automated planning.
It addresses two main challenges that make it difficult for
a user to assess the limits and capabilities of an AI system:
(1) the scale mismatch problem, as discussed above and (2)
the need for describing an agent’s “capabilities”, that are de-
fined by the suite of AI algorithms that it uses for behavior
synthesis, rather than its core functionality as represented by
its primitive, executable actions.

Prior work on the topic addresses complementary prob-
lems of deriving symbolic descriptions for pre-defined
skills (Konidaris et al. 2018) and of learning users’ concep-
tual vocabularies (Kim et al. 2018; Sreedharan et al. 2022).
However, they do not address the problem of discovering
high-level user-interpretable capabilities that an agent can
perform using arbitrary, internal behavior synthesis algo-
rithms without a specification of the skills that need to be
described. Verma et al. (2021) learn user-interpretable mod-
els of the AI system using query-answering, but they specif-
ically assume that problems (1) and (2) do not hold: they
assume that the user’s vocabulary can discern between any
two states, and develop methods for learning descriptions of
the agent’s primitive actions rather than the capabilities re-
sulting from its planning/learning algorithms. A greater dis-
cussion of related work is presented in Sec.5.

As a starting point, we assume determinism and full ob-
servability on part of the AI system. Since there are no solu-
tion approaches for solving the problem even in this founda-
tional setting, our framework can serve as a foundation that
can be extended to the more general setting in the future.
Running example Consider a game based on “The Legend
of Zelda” (Fig.1). This game features a protagonist Link who
must defeat the antagonist Ganon, and escape through the
door using a key. (a) is the game state as the agent sees it, and
its primitive actions are keystrokes (b). But these keystrokes
are meaningless to the user as (i) they are too fine-grained
and (ii) they showcase only the raw functionality of a game-
playing agent–its true capabilities depend on the AI planning
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(a)

State as available
to the agent:

(pixel 1-1 #FD2310)
(pixel 1-1 #B24319)

.

.
Agent actions
(keystrokes):
W, A, S, D, E

.

.

.
(b)

State in user’s vocabulary:
(at ganon 5-3)
(at key 9-4)
(alive ganon)

.

.
Desired:

Capabilities such as:
(Go next to Key), (Go next
to Door), (Defeat Ganon),
(Pick Key), (Go next to

Ganon), (Open Door)
(c)

(:capability a9
:parameters ()
:precondition
(and (at link 6-3)
(at ganon 5-3)
(alive ganon)
(next_to ganon))

:effect
(and (clear 5-3)
(not(at ganon 5-3))
(not(next_to ganon))
(not(alive ganon)))).

(d)

Figure 1: (a) A Zelda-like game; (b) States available to the agent and its actions; (c) States represented in user vocabulary, and
possible set of desired capabilities; (d) A capability description learned by our method.

and learning algorithms that it uses.
In such situations, the user may want to know what a given

game-playing agent can and can’t do using its internal algo-
rithms, rather than a listing of the primitive actions. E.g.,
would it be able to go pick up the key from anywhere in
the room? Fig. 1c shows common English terms that a user
might understand, and the types of capabilities that they may
want to know about.

This paper shows how we can discover and describe an
agent’s capabilities in a grounded form such as Fig. 1d. This
particular capability can be readily transcribed as “If Link
is at cell (6-3); Ganon is at cell (5-3), is not defeated, and
is next to Link; then Link can act to reach a state where
Ganon is defeated, cell (5-3) is empty and Link is not next
to Ganon.” Our empirical evaluation shows that our system
effectively discovers high-level capabilities, and generates
grounded descriptions of them; our user study shows that
the discovered capabilities help users effectively summarize
and analyze the feasibility of different agent behaviors.

The rest of this paper is organized as follows. The next
section presents a formal framework for capabilities as well
as notions of correctness for discovered agent capabilities.
Sec. 3 describes our main algorithms and their formal prop-
erties and Sec. 4 presents empirical results and results from
user studies. Finally, Sec. 5 discusses the relationship of the
presented methods with prior work.

2 Formal Framework
We model an AI system (“agent” henceforth) as a 3-tuple
⟨S,A, T ⟩, where S is the state space, A is the set of actions
that the agent can execute, T : S×A → S is a deterministic
black-box transition function determining the effects of the
agents primitive actions on the environment. For brevity of
notation, we use a(s) to represent T (s, a), where a ∈ A, and
s ∈ S. Given a goal set G ⊆ S, a black-box deterministic
policy Π : S → A maps each state to the action that the
agent should execute in that state to reach a g ∈ G.

In this paper, we use “actions” to refer to the core func-
tionality of the agent, denoting the primitive actions that the
agent could execute (e.g., keystrokes in our running exam-
ple). In contrast, we use the term “capabilities” to refer to

the high-level behaviors that the agent can perform using
its AI algorithms for behavior synthesis, including planning
and learning (e.g., defeating Ganon or picking up the key).
Thus, actions refer to the set of choices that a tabular-rasa
agent may possess, while capabilities are a result of its agent
function (Russell 1997) and can change as a result of algo-
rithmic updates even as the agent uses the same actions.

2.1 Abstraction
We now define the notion of abstraction used in this work.
Several approaches have explored the use of abstraction in
planning (Sacerdoti 1974; Giunchiglia et al. 1992; Helmert
et al. 2007; Bäckström et al. 2013; Srivastava et al. 2016;
Konidaris 2019). We refer to S̃ as the set of high-level or ab-
stract states, and S as the set of low-level or concrete states.
We define abstraction as in (Srivastava et al. 2016):

Definition 1. Let S and S̃ be sets such that |S̃| ≤ |S|. An
abstraction from S to S̃ is defined by a surjective function
f : S → S̃. For any s̃ ∈ S̃, the concretization function
f−1(s̃) = {s ∈ S : f(s) = s̃} denotes the set of states
represented by the abstract state s̃.

Following this notion, we use ˜ whenever we refer to
a state, a predicate, or an action pertaining to the abstract
state space. The next sections use abstraction to formalize
the concept of capabilities.

2.2 Capability Descriptions
Our objective is to develop a capability discovery algorithm
that learns the capability description of a black-box AI agent
using as input (i) the agent; (ii) a compatible simulator us-
ing which the agent can simulate its primitive action se-
quences; and (iii) the user’s concept vocabulary, which may
be insufficient to express the simulator’s state representa-
tion. Such assumptions on the agent are common. In fact,
use of third-party simulators for development and testing
is the bedrock of most of the research on taskable AI sys-
tems today (including game playing AI, autonomous cars,
and factory robots). Providing simulator access for assess-
ment is reasonable as it would allow AI developers to re-
tain freedom and proprietary controls on internal software



while supporting calls for assessment and regulation using
approaches like ours.

Several threads of ongoing research address the problem
of identifying user-specific concept vocabularies (Kim et al.
2018; Sreedharan et al. 2022), and the field of intelligent
tutoring systems develops methods for helping users under-
stand a fixed concept vocabulary. These methods can be used
to either elicit or impart a vocabulary for a given user, and
such systems can be used to complement the methods de-
veloped in this paper. E.g., for a 3-D Blocksworld simulator
with objects a and b, and coordinates x, y, and z, “on(a, b)
means z(a) > z(b), x(a) = x(b), and y(a) = y(b).” As this
example illustrates, such vocabularies can be inaccurate.

However, since the problem of capability discovery is not
well understood even in settings where user-concept defini-
tions are readily available, we focus on capability discov-
ery with a given vocabulary with known definitions and for-
malize our approach using them. Furthermore, our empiri-
cal evaluation and user studies don’t place requirements on
user-training or concept acquisition other than the implicit
requirement of non-technical English comprehension, which
is common to user studies conducted in English. We formal-
ize these concept definitions as follows:

Definition 2. Given a concrete state s ∈ S, a set of con-
cepts/predicates P̃ = p̃k1

1 , . . . p̃kn
n with their arities ki, a set

of object tuples Õ (of dimension at most kn), and a Boolean
evaluation function e : S × P̃ × Õ → {T, F}, we define
s |=e p̃(õ1, . . . , õn) iff e(s, p̃, õ1, . . . , õn) = T . We define
the abstraction s̃P̃ ,Õ of a state s ∈ S as the set of all literals
over P̃ and Õ that are true in s. S̃P̃ ,Õ denotes the abstract
state space {s̃P̃ ,Õ : s ∈ S}.

We omit subscripts P̃ and Õ unless needed for clarity.
STRIPS-like models (Fikes et al. 1971; McDermott et al.

1998) are natural candidates for formalizing interpretable
capability descriptions. This is because when used with a
user’s vocabulary, such models can be readily transcribed
into statements such as “in situations where X holds, if
the agent executes actions a1, . . . , ak it would result in Y ”,
where X and Y are in the user’s vocabulary (Camacho et al.
2019; Verma et al. 2021). In our running example, such a
description could indicate that if Link is next to Ganon then
Link can defeat it. We express capability descriptions using
a STRIPS-like representation.

Definition 3. A capability description is a tuple M =
⟨P̃ , Ã, Õ⟩, where P̃ = {p̃1, . . . , p̃n} is a finite set of predi-
cates; Ã = {ã1, . . . , ãk} is a finite set of capabilities; and Õ

is a finite set of objects. Each capability ã ∈ Ã is represented
as a tuple ⟨pre(ã), eff(ã)⟩, where pre(ã) and eff(ã) are sets
of literals over P̃ and Õ.

Here each atom could be absent, positive, or negative in
the precondition and effects of an action, but an atom cannot
be positive (or negative) in both preconditions and effects
simultaneously. Semantics of capabilities are close to those
of STRIPS actions, but they address vocabulary disparity:
an agent can perform a capability ã in any concrete state s
where s̃ |= pre(ã); as a result, the system reaches a concrete

state s′ (a member of an abstract state s̃′). Atoms that don’t
appear in eff(ã) retain their truth values from s̃ in s̃′ while
others are set to their modes in eff(ã), i.e., ∀ℓ ∈ eff(ã), s̃′ |=
ℓ. For brevity, we represent this as s̃′ = ã(s̃).

In these terms, the technical problem addressed in this pa-
per is to discover the capability description (Def. 3) for an
agent as defined at the start of this section. The next section
formalizes notions of correctness for assessing discovered
capabilities and algorithms for capability discovery.

2.3 Correctness of Discovered Capabilities
We collect execution traces to discover an agent’s capabili-
ties. We define these traces as follows.
Definition 4. An execution trace e is a sequence of
states of the form ⟨s0, s1, . . . , sn−1, sn⟩, such that ∀i ∈
[1, n] ∃ai ∈ A ai(si−1) = si.

Since we do not assume that the user’s vocabulary is pre-
cise enough to discern all states available to the agent, more
than one low-level state in an execution trace may be ab-
stracted to a single high-level or abstract state in S̃. E.g., in
Fig.1a, the state available to the agent expresses pixel-level
details of the game (Fig.1b), whereas the user’s vocabulary
can express it only as an abstract state that represents multi-
ple similar low-level states (Fig.1c). We define the following
notion of consistency to assess the correctness of our learned
capability descriptions with available execution traces.

Definition 5. A capability description M = ⟨P̃ , Ã, Õ⟩ is
consistent with an execution trace e = ⟨s0, . . . , sn⟩ iff there
exist abstract states s̃, s̃′ ∈ S̃ and a transition point m ∈
[1, n− 1] such that ∀i ≤ m s̃i = s̃, ∀i > m s̃i = s̃′, and
∃ã ∈ Ã s̃′ = ã(s̃).

We extend this terminology to say that a capability de-
scription is consistent with a set of execution traces E iff it
is consistent with every trace in E. We next define the no-
tion of maximal consistency to assess the correctness of a
capability description with a set of execution traces E.
Definition 6. Let E be a set of execution traces, and Λ be the
set of possible agents that can generate all execution traces
in E. A capability description M = ⟨P̃ , Ã, Õ⟩ is maximally
consistent with a set of execution traces E iff (i) M is con-
sistent with every trace in E, and (ii) adding any atom as
positive or negative precondition or effect of an action in M
makes it inconsistent with at least one execution trace that
can be generated by at least one agent A∗ ∈ Λ.

Finally, we formalize the notion of downward refinability,
that the discovered capabilities are indeed within the agent’s
scope. Recall the notion of abstract state spaces (Def. 2).

Definition 7. Let M = ⟨P̃ , Ã, Õ⟩ be a capability de-
scription with S̃, the induced state space over P̃ , Õ, for an
agent A = ⟨S,A, T ⟩. M is refinable iff ∀ã ∈ Ã,∀s̃ ∈
S̃, if s̃ |= pre(ã) then ∀s ∈ f−1(s̃) ∃a1, . . . , an :
an(an−1 . . . (a1(s)) . . .) ∈ ã(s̃).

In these terms, discovered capabilities are more likely to
be useful if they are accurate in the sense that they are con-
sistent with execution traces and refinable, i.e., true repre-
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Figure 2: The capability description learner uses a user’s
preferred vocabulary, generates the agent query, converts it
to the low-level query, and based on its responses returns a
user-interpretable description of the agent’s capabilities.

sentations of what the agent can do. In practice, approxi-
mation algorithms could yield discovered capabilities that
accommodate real-world uncertainty by providing varying
degrees of refinability and consistency.

3 Active Capability Discovery
Fig. 2 illustrates our overall approach. We utilize a query-
based paradigm to identify useful execution traces and de-
rive a capability description. The core problem in capa-
bility discovery is to effectively abstract the agent’s func-
tionality as witnessed through execution traces in a simu-
lator to capabilities that can be described in the user’s vo-
cabulary. We use Agent Interrogation Algorithm (AIA), by
Verma et al. (2021) to generate potentially useful execution
traces, but AIA does not address these core problems of ca-
pability discovery. We address the gap by developing a hi-
erarchical query-answering paradigm where queries are ini-
tially generated in the user’s vocabulary and then translated
into primitive-state/action based low-level queries. Finally,
the execution trace generated as a result of the query is ab-
stracted back into a user-level response and assimilated into
the capability description being computed. Formally, a user-
level query is a function that maps an agent to a response.

Definition 8. A user-level query ϱ̃⟨s̃I , π̃⟩ : A→N×S̃ is pa-
rameterized by a start state s̃I and a plan π̃ = ⟨ã1, . . . , ãN ⟩.
It maps agents to responses θ = ⟨nθ, s̃θ⟩ such that nθ is the
length of the longest prefix of π that A can execute and the
result of that execution is s̃θ.

The input to the capability discovery algorithm (Alg. 1)
includes user interpretable predicates P̃ and the agent A.
Generating execution traces As a first step, Alg. 1 col-
lects a set of low-level execution traces E (line 1). These
traces are obtained by giving A a set of tasks of the form
⟨sI , sG⟩ , where sI , sG ∈ S, and asking it to reach sG from
sI . The actions it takes to complete the task and the interme-
diate states form the set of execution traces E. Partial capa-
bility descriptions Ã in the user’s vocabulary are generated
from E (line 2) (see Sec.3.1).
Comparing abstract models The algorithm iteratively
determines how each high-level predicate P̃ appears in a ca-
pability Ã, in the precondition and effect (line 4). To achieve
this, it generates three abstract capability descriptions each

Algorithm 1: Capability Discovery Algorithm

Require: predicates P̃ , agent A
1: E ← generate execution traces(A)
2: Ã← generate partial capability descriptions(E)

3: Set M̃∗ = ϕ, L̃← {pre, eff}
4: for each ⟨L̃, Ã, P̃ ⟩ do
5: Generate M+,M−,M∅ by setting P̃ in Ã at L̃ to

+,−, and ∅ in M̃∗

6: for each pair M1,M2 in {M+,M−,M∅} do
7: ϱ̃← generate query(M1,M2)

//ϱ̃ is of the form ⟨s̃0, ã1, ã2, . . . , ãk⟩
8: s0 ← refine state(s̃0)
9: for i in range [1, k] do

10: Set s̃i by applying ãi in state s̃i−1

11: si ← concretize state s̃i
12: end for
13: for i in range [0, k − 1] do
14: ϱ← ⟨si, si+1⟩
15: θ ← ask agent(ϱ,A)
16: if θ = ⊥ then
17: θ̃ ← ⟨i, s̃i⟩
18: end if
19: end for
20: θ̃ ← ⟨k, s̃k⟩
21: M̃∗ ← consistent description(θ̃,M1,M2)
22: end for
23: end for
24: return M̃∗

Query
Refinement

Response
Interpretation

representing that P̃ can be a positive or negative precondi-
tion (or effect) of Ã, or can be absent in Ã. Then the algo-
rithm picks two of these descriptions at a time (line 6) and
generates a user-level query ϱ̃ that can distinguish between
the two descriptions similar to the query generation of AIA
(line 7). Such queries cannot be posed directly to the agent,
hence they are converted to one or more agent-level queries
using the query refinement process (lines 8-14). Then the al-
gorithm uses a response interpretation process to collect the
responses of all agent-level queries that correspond to the
same user-level query, and process them to generate a single
user-level response ⟨nθ, s̃θ⟩ (lines 15-20) (See Sec.3.2).
Learning capability descriptions Alg. 1 finds a capabil-
ity description that is consistent with A’s response (line 21).
This process includes asking the same user-level query to
the two abstract capability descriptions and checking which
description’s response is consistent with A’s response. This
process is repeated until Alg. 1 finds how each predicate in
P̃ appears in precondition and effect of each capability in Ã.

3.1 Generating Partial Capability Descriptions
This component corresponds to line 2 of Alg. 1. Given an
execution trace e = ⟨s0, s1, . . . , sn⟩ ∈ E, whenever s̃i ̸=
s̃i+1, we store the transition as a possible new capability
ãs̃i−s̃i+1

. It is possible that multiple low level states map
to a single state, i.e., s̃i = s̃i+1. Hence, the abstractions we
use in this work are a special case of forall-exists abstrac-
tion (Srivastava et al. 2016) defined as:



Definition 9. An abstraction is a forall-exists abstraction iff
∀s̃′ ∈ ã(s̃), ∀s ∈ s̃, ∃s′ ∈ a(s) such that s′ ∈ s̃′.

The only difference we have as compared to this is that
high-level capabilities ã ∈ Ã that we learn are deterministic.
For each new possible capability ãs̃i−s̃i+1

, the states before
and after executing these capabilities are stored as possible
sets of preconditions and effects. We then combine sets of
possible capabilities that cause similar state transitions. In a
manner similar to prior work by Stern et al. (2017), for each
of these sets, we create a possible set of preconditions by
taking the intersection of the predicates that were true in the
states where these capabilites were executed. Similarly, we
create possible effects using the states after the capabilities
were executed. This gives us partial capability descriptions
of these high-level capabilities. Further queries in line 7 are
used to complete the descriptions of these capabilities.

3.2 Query Refinement and Response
Interpretation Process

Query refinement corresponds to lines 8-14 of Alg. 1. It con-
verts a user-level query ϱ̃ to a set of agent-level queries that
are posed to the agent. A user-level query ϱ̃ = ⟨s̃I , π̃⟩ can
be represented as ⟨s̃0, ã1, ã2, . . . , ãN ⟩, where the initial state
s̃I = s̃0 and plan π̃ = ⟨ã1, ã2, . . . , ãN ⟩. The first step is to
convert the trace to the form ⟨s̃0, ã1, s̃1, ã2, s̃2 . . . , ãk, s̃N ⟩
using the partial capability descriptions Ã learned earlier
from the execution traces (line 2). Each of the high-level
states are then concretized to the low-level states, and the
consecutive low-level states are paired in the form ⟨si, si+1⟩,
where i ranges from 0 to N−1. These pairs are directly used
as agent-level queries posed to the agent sequentially.

Response Interpretation corresponds to lines 15-20 of
Alg. 1. The pairs of states ⟨si, si+1⟩ are given sequentially
to the agent and the agent responds true (or false) if it can
(or cannot) reach from state si to si+1 using its internal pol-
icy. If the agent responds true for all such pairs, then it shows
that the agent can execute the high-level plan π̃ successfully,
and the final high-level state along with the plan length is set
as a response θ̃ (line 20). However, if the agent fails to reach
a state si+1 from the state si, then it is treated as a failure to
execute the capability ãi in state s̃i, and the response θ̃ is set
as ⟨i, s̃i⟩ (line 17). This also results in updating the partial
description of the failing high-level capability in line 21.

The following lemma formalizes the property that the re-
sponse interpretation correctly converts the agent-level re-
sponses to the user-level responses.

Lemma 1. Given that the agent responses to the agent-level
queries are correct, the response θ̃ to the user-level query
generated by Alg. 1 is always correct.

Desirable properties of Alg.1 The following section for-
malizes the properties that the learned capability description
must satisfy for correctness.

Theorem 1. Given the predicates P̃ in the user vocabulary
and the set of low-level execution traces E generated in sta-
tionary fully observable settings, the capability description
M = ⟨P̃ , Ã, Õ⟩ of an agent A with deterministic black-box

(a)

(b)

If Link is at cell (6-3),
Ganon is at cell (5-3), is
not defeated, and is next
to Link, then Link can act
to reach a state where
Ganon is defeated, cell
(5-3) is empty and Link is
not next to Ganon.

(c).

....... Keystrokes 1: W→ A→ E

....... Keystrokes 2: S→ S→ A→ W→ W→ A→ E
(d)

Figure 3: Learning the defeat monster capability of Zelda-
like game. Sub-figures (a) and (b) show the states available
to the agent immediately before and after executing either of
the keystroke sequences shown in (d). Sub-figure (c) shows
a boilerplate readable description that can be generated from
the learned description for a capability that we might under-
stand as Defeat Ganon in Fig. 1(d).

policy learned by the capability discovery algorithm (Alg.1)
is consistent with E and is refinable.

Theorem 2. Let A = ⟨S,A, T ⟩ be an agent operating in
a deterministic, fully observable environment with a state
space S using a set of primitive actions A. Given an input
vocabulary P̃ , the set of execution traces E generated by A,
and the set of possible agents Λ that can generate all execu-
tion traces in E, the set of capabilities maintained in Alg. 1
is maximally consistent with the set of execution traces E.

4 Empirical Evaluation
We implemented and evaluated Alg. 1 with two broad cate-
gories of input test agents: Policy agents can use (possibly
learned) black-box policies to plan and to respond to agent-
level queries. We used policy agents with hand-coded poli-
cies for this evaluation. Search agents respond to agent-level
queries using arbitrary search algorithms. We used search
agents that use A∗ search. We now describe the setup of our
experiments used for evaluation.

4.1 Experimental Setup
Our test agents use the General Video Game Artificial In-
telligence (GVGAI) framework (Perez-Liebana et al. 2016,
2019). We performed experiments on four domains – Zelda,
Cook-Me-Pasta, Escape, and Snowman. Details about these
domains and the user vocabularies are available in the ap-
pendix. Since the complete list of an agent’s capabilities
may be irrelevant to a user’s current needs, w.l.o.g, our im-
plementation supports an input including sets of formulas
representing the properties that may be of interest to the
user. This set can be the set of all grounded predicates in
the user’s concept vocabulary. We then query the agent in a
way that yields capability descriptions relevant for achieving
these properties.
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Figure 4: Performance comparison of search-based and
policy-based agents in terms of the number of queries asked
and time taken per query when increasing the grid size.

For each domain, and for each grid size in that domain,
we create a random game instance with the goal of achieving
one of the user’s specified properties of interest. The number
of obstacles in all domains, except Escape, is set to 20%
of the total cells in the grid, whereas all other objects are
generated randomly. In Escape domain, we set the number
of holes, walls, and movable blocks to 10%, 20%, and 20%
of the total cells respectively. We use the solution to that
instance to generate the execution trace that is used in lines
1-2 of Alg. 1. These solutions are not always optimal. All
experiments are run on 5.0 GHz Intel i9 CPUs with 64 GB
RAM running Ubuntu 18.04.

4.2 Empirical Results
As shown in Sec.3, our algorithm is guaranteed to compute
capability descriptions that are correct in the sense that they
are consistent with the execution traces, and refinable and
executable with respect to the true capabilities of the agent.
Fig. 1d shows an example of a learned capability descrip-
tion from the Zelda-like domain, corresponding to the De-
feat Ganon capability shown in Fig. 3. We now present the
main conclusions of our empirical analysis.

We evaluated our algorithm’s performance along two as-
pects; (i) how the performance of our approach changes with
respect to the size of the problem; and (ii) how its perfor-
mance differs for search-based vs policy-based agents.
Scalability analysis We increase the size of each domain
to analyze its effect on the performance of the search and
policy agents. Fig. 4 shows the graphs for the experimental
runs on the four domains. In all four domains, for both kinds
of agents, the number of queries increase as we increase the
grid size. This happens because the queries are grounded,
and the number of possible groundings of the predicates in-
creases as we increase the grid size. The increasing num-
ber of queries is expected behavior and this is also clear
in approaches that use passive observations of agent behav-
ior (Yang et al. 2007; Aineto et al. 2019; Bonet et al. 2020).
Agent type analysis The number of queries required by

S1 S2 S3 S4 S5 S6 S7 S8

C1 1.0 0 0 0 0 0 0 0
C2 0 1.0 0 0 0 0 0 0
C3 0 0 0.94 0 0 0 0.06 0
C4 0 0 0 1.0 0 0 0 0
C5 0 0 0 0 0.94 0 0 0.06
C6 0 0 0 0 0 1.00 0 0

Table 1: Accuracy of capability summarization study for the
Zelda-like game. An element in row Ci and column Sj repre-
sents the fraction of instances when capability Ci was sum-
marized as Sj by the study participants. Correct summariza-
tion of Ci is Si (in green). C1,S1: Go next to Ganon; C2,S2:
Go next to Key; C3,S3: Go next to Door; C4,S4: Defeat
Ganon; C5,S5: Pick Key; C6,S6: Open Door; S7: Go next
to Wall; S8: Break Key.

the policy agent is higher than that of the search agent in al-
most all cases. This is because a large number of user-level
queries fail to run successfully on the agent as the high-level
plan in the user-level query does not always align with the
policy of the agent. However, the time per query is lesser for
the policy agents as they can answer the queries by following
their policy, whereas the search agents perform an exhaus-
tive search of the state space for every low-level query.

4.3 User Study
We conducted a user study to evaluate interpretablity of the
capability descriptions computed by Alg. 1. Intuitively, our
notion of interpretability matches that of common English
and its use in AI literature, e.g., as enunciated by Doshi-
Velez et al. (2018): “the ability to explain or to present in
understandable terms to a human”. We evaluate this through
two operational hypotheses:
H1. The user can effectively summarize the learned capabil-
ity descriptions.
H2. The discovered capabilities make it easier for users to
analyze and predict the outcome of the agent’s possible be-
haviors.

We designed two studies to evaluate these hypotheses.
Capability summarization study This study evaluates
the interpretability of the discovered capability descriptions.
The user is explained the rules of the Zelda-like game de-
scribed earlier, and then presented with a text description
of the six learned capabilities. Finally, the user is asked to
choose a short summarization for each description, out of
the eight possible summarizations that we provide.
Behavior analysis study This study compares the pre-
dictability and analyzability of agent behavior in terms of the
agent’s low-level actions and high-level capabilities. Each
user is explained the rules of Zelda-like game. One set of
users are presented with text descriptions of the agent’s
primitive actions, while others are asked to complete the
summarization study. Then each user is given same 5 ques-
tions in order. Each question contains two game state im-
ages; start and end state. The user is asked what sequence
of actions should the agent take to reach the end state from
the start state. Each question has 5 possible options for the



Figure 5: Data from behavior analysis shows that using com-
puted capability descriptions took lesser time and yielded
more accurate results. See Sec.4.3 for details.

user to choose from, and these options differ depending on
their group. We then collect the data about the accuracy of
the answers, and the time taken to answer each question.
Study design A total of 50 participants were recruited
from Amazon Mechanical Turk and randomly divided into
two groups of 25 each. Each user in one group (capabil-
ity group) was asked to complete the summarization study
followed by the behavior analysis study with capability de-
scriptions, whereas each user from another group (primitive
action group) was asked to complete the behavior analysis
study with primitive actions. We used screeners (Arndt et al.
2021; Kennedy et al. 2020) to ensure quality of the data col-
lected, and discarded 13 responses. The results are based on
the responses of 19 and 18 users in primitive action and ca-
pability group, respectively.
Results The results of the capability summarization study
(Tab. 1) demonstrate that the users are able to summarize
the descriptions almost uniformly accurately except for C3
and C5. This verifies H1 that the users can effectively sum-
marize the learned capability descriptions. The results for
the behavior analysis study (Fig. 5) indicate that the users
took less time to answer questions and they got more re-
sponses correct when using the capabilities as compared to
using primitive actions. This validates H2 that the discov-
ered capabilities made it easier for the users to analyze and
predict the agent’s behavior correctly.

5 Related Work
High-level skills from input options Given a set of op-
tions encoding skills as input, Konidaris et al. (2018) and
James et al. (2020) propose methods for learning high-
level propositional models of options representing various
“skills.” They assume access to predefined options and learn
the high-level symbols that describe those options at the
high-level. While they use options or skills as inputs to learn
models defining when those skills will be useful in terms
of auto-generated symbols (for which explanatory seman-
tics could be derived in a post-hoc fashion), our approach
uses user-provided interpretable concepts as a priori inputs
to learn agent capabilities: high-level actions as well as their
interpretable descriptions in terms of the input vocabulary.
Learning symbolic models using physics simulators
Zhang et al. (2018) learn symbolic transition models and
use them effectively for planning using a set of input

interpretable attributes. Some approaches learn different
kinds of symbolic models of the functionality of ATARI or
physics based simulators using methods like conjunctions
of binary input features (Kansky et al. 2017), graph neu-
ral networks (Battaglia et al. 2016; Cranmer et al. 2020),
CNNs (Agrawal et al. 2016; Fragkiadaki et al. 2016), etc.
Some methods create interpretable descriptions of reinforce-
ment learning policies using trees (Liu et al. 2018) or spe-
cialized programming languages (Verma et al. 2018). These
approaches solve the orthogonal problem of learning the
functionality of an agent that could help an user understand
how an agent would solve a problem, whereas we focus on
learning capabilities of the agent that could help a user un-
derstand and answer what type of problems it could solve.
Action model learning The planning community has also
worked on learning STRIPS-like action models of agents
from observations of its behavior (Gil 1994; Yang et al.
2007; Cresswell et al. 2009; Zhuo et al. 2013; Aineto et al.
2019). Jiménez et al. (2012) and Arora et al. (2018) present
a comprehensive review of such approaches. These methods
work with broad assumptions that the agent model is inter-
nally expressed in the same vocabulary as the user’s (Gil
1994; Weber et al. 2011), or at a similar level of abstrac-
tion (Mehta et al. 2011; Verma et al. 2021). Our approach
is able to learn the capability descriptions in terms of fewer
concepts than used by the agent.
Concept acquisition There is also a lot of ongoing and
existing work on the orthogonal problem of learning pred-
icates or concepts from user-provided examples or feed-
back (Amershi et al. 2009; Kim et al. 2015; Koh et al. 2017;
Kim et al. 2018; Sreedharan et al. 2022; Lage et al. 2020)
– this complements our research and can be used with our
methods. Additionally, resolving the problem of obtaining
user-interpretable predicates does not resolve the research
problem that we focus on: deriving high-level descriptions
of agent capabilities using those predicates.

6 Conclusion
We presented a novel approach for learning the grounded

capability description of an AI system in terms of user-
interpretable concepts by combining information from pas-
sive execution traces and active query answering. Our ap-
proach works for settings where the user’s conceptual vo-
cabulary is imprecise and cannot directly express the agent’s
capabilities. Our empirical analysis showed that for the
agents that internally use black-box deterministic policies,
or search techniques, we can successfully discover the ca-
pabilities and their descriptions. Extending this approach
for partially observable settings and relaxing the various as-
sumptions we made are some of the promising future direc-
tions for this work.
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A Domains and their Semantics
This section describes the four domains and the semantics of
the user-interpretable predicates in these domains. Note that
information like orientation of the agent (player) in each of
these domains is not captured by any of the predicates. This
information is important for the low-level policies as certain
actions can only be executed in certain orientations.

A.1 Zelda
The Zelda-like domain, as shown in Fig. 1a, consists of a
key, a door that opens using that key, the antagonist player
Link, and the protagonist monster Ganon. To win the game,
Link must defeat Ganon, and then should use the key to open
the door to escape. Link can move one cell at a time in the
direction it is facing. If Link moves into the cell adjacent to
the key, Link picks up the key by executing the keystroke
E (special keystroke). The same keystroke is used to Defeat
Ganon when Link is facing Ganon and is in a cell adjacent
to Ganon, and to escape when Link is in a cell adjacent to
the door and facing it. The user provided vocabulary for this
domain is shown below:

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if Link has the key.
escaped() True if Link has escaped (game is over).
alive(?m) True if Ganon is still alive
next to ganon() True if Link is in a cell adjacent to Ganon.
next to key() True if Link is in a cell adjacent to Key.
next to door() True if Link is in a cell adjacent to Door.

A.2 Cook-Me-Pasta
The Cook-Me-Pasta domain, as shown in Fig. 6a, consists
of raw pasta, sauce, boiling water, tuna (fish), lock, and key.
The objective is to cook tuna pasta using a three step process.
First the pasta is cooked by adding boiling water to the raw
pasta, this can be done by pressing E while holding both the
ingredients. Similarly tuna is cooked by mixing sauce and
tuna. Finally, the cooked pasta and the cooked tuna are to
be mixed together. One or more of the ingredients can be
locked in a room which must be opened using a key. The
user provided vocabulary for this domain is shown below:

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if the player has the key
pasta cooked() True if the pasta is cooked
is door(?loc) True if the location ?loc has a door

(a) (b) (c)

Figure 6: GVGAI’s domains; (a) Cook-Me-Pasta, (b) Es-
cape, and (c) Snowman.

A.3 Escape
The Escape domain, as shown in Fig.6b, consists of movable
blocks, fixed holes, and cheese. The blocks can be pushed
into the holes to clear out a path. The game is finished when
the player reaches the location with cheese. The user pro-
vided vocabulary for this domain is shown below:

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
is hole(?loc) True if the location ?loc has a hole
is goal(?loc) True if the location ?loc is he goal loca-

tion
is block(?loc) True if the location ?loc has a movable

block

A.4 Snowman
The Snowman domain, as shown in Fig.6c, consists of three
pieces of a snowman: the top, middle, and bottom piece; a
key that can be used to unlock a door (like other domains),
and the goal cell. The objective of the game is to assemble
the snowman in the goal location in order, constrained by the
player being able to hold only one piece at any given time.

The user provided vocabulary for this domain is shown
below:

Predicate Meaning

at(?ob ?loc) True if an object ?ob is at location ?loc
wall(?loc) True if there is a wall at location ?loc
clear(?loc) True if location ?loc is empty, i.e., it has

no object, wall, or player
has key() True if the player has the key
player has(?ob) True if the player has object ?ob
is goal(?loc) True if the location ?loc is he goal loca-

tion
placed(?part) True if part ?part is placed at the goal

location.
is door(?loc) True if the location ?loc has a door

B Learned Capability Descriptions
Some sample learned grounded capabilities for the four do-
mains are shown in Fig.7. Note that the name of capabilities
are not learned by our approach, but were manually assigned
after the capability descriptions were learned.



(:capability defeat-ganon 
  :parameters () 
  :precondition (and  
    (at link 6-3) 
    (at ganon 5-3) 
    (alive ganon) 
    (next_to ganon)) 
  :effect (and 
    (clear 5-3) 
    (not (at ganon 5-3)) 
    (not (next_to_ganon)) 
    (not (alive ganon))))

(:capability get-key 
  :parameters () 
  :precondition (and   
    (at Link 1-2)  
    (next_to_key)    
    (at key 0-2)) 
  :effect (and 
    (not (at Link 1-2)) 
    (not (at key 0-2) 
    (clear 1-2) 
    (has-key) 
    (at Link 0-2)))

(:capability open-door 
  :parameters () 
  :precondition (and 
    (at link 1-1) (has_key) 
    (at door 2-1) (clear 2-1) 
    (next_to_door) 
    (not (alive ganon))) 
  :effect (and 
    (not (at link 1-1)) 
    (not (clear 2-1)) 
    (clear 1-1) (escaped) 
    (at link 2-1)))

(:capability combine 
  :parameters () 
  :precondition (and 
    (at p1 4-2) 
    (at rpasta 2-2) 
    (at bwater 3-2)) 
  :effect (and 
    (not (at p1 4-2)) 
    (not (at rpasta 2-2)) 
    (not (at bwater 3-2)) 
    (at p1 3-2)(clear 4-2) 
    (at cpasta 2-2)))

(:capability finish-pasta
  :parameters () 
  :precondition (and
    (at p1 1-0)
    (at cpasta 1-2) 
    (at csauce 1-1)) 
  :effect (and 
    (not (at p1 1-0)) 
    (not (at cpasta 1-2)) 
    (not (at csauce 1-1)   
    (clear 1-0)(at p1 1-1) 
    (pasta-cooked) 
    (at fpasta 1-2)))

(:capability push-bwater 
  :parameters () 
  :precondition (and     
    (at p1 0-1) 
    (at bwater 1-1) 
    (clear 2-1)) 
  :effect (and 
    (not (at p1 0-1)) 
    (not (at bwater 1-1)) 
    (clear 2-1) (clear 0-1) 
    (at bwater 2-1) 
    (at p1 1-1)))

(:capability push-block 
  :parameters () 
  :precondition (and  
    (at p1 2-2) 
    (at b6 2-1) 
    (clear 2-0)) 
  :effect (and 
    (not (at p1 2-2)) 
    (not (at b6 2-1)) 
    (not (clear 2-0)) 
    (at b6 2-0)(at p0 2-1) 
    (clear 2-2)))

(:capability pushto-hole 
  :parameters () 
  :precondition (and  
    (at p1 3-4) 
    (at b2 2-4) 
    (is-hole 1-4)) 
  :effect (and 
    (not (at p1 3-4)) 
    (not (at b2 2-4)) 
    (clear 3-4) 
    (at p1 2-4)))

(:capability escape 
  :parameters () 
  :precondition (and 
    (at p1 2-3)) 
  :effect (and 
    (not (at p1 2-3)) 
    (clear 2-3) 
    (at p1 2-4) 
    (escaped)))

(:capability pick-bottom 
  :parameters () 
  :precondition (and  
    (at p1 2-0) 
    (at bottom-2-1) 
    (not (player_has middle)) 
    (not (player_has top))) 
  :effect (and 
    (not (at bottom 2-1)) 
    (clear 2-1) 
    (player_has bottom)))

(:capability stack-top 
  :parameters () 
  :precondition (and  
    (at p1 3-4)(is-goal 2-4) 
    (at middle 2-4) 
    (at bottom 2-4) 
    (player_has top)   
    (placed bottom)      
    (placed middle)) 
  :effect (and 
    (not (at top 2-4)) 
    (not (player_has top)) 
    (placed top)))

(:capability drop-top 
  :parameters () 
  :precondition (and  
    (at p1 0-2) (clear 0-1) 
    (player_has top) 
    (not (at top-part 0-2))) 
  :effect (and 
    (not (clear 0-1)) 
    (not (player_has top)) 
    (at top 0-1)))
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Figure 7: Some sample learned grounded capabilities for the four GVGAI domains




