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Abstract

We explore how a chain of thought—a series of i reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.

Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought achieves state-of-th
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.
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Abstract evaluations still focus on the linguistic capabili-
ties of LLMs, e.g., reading understanding, with-
Language Models (LLMs) primarily focus out much strategic thinking. Therefore, beneath
on single-turn and static envi such the impressive linguistic ilities of LLMs, a
as arithmetic problems. The crucial prob- critical question that has piqued the curiosity of re-
lem of multi-turn, strategic reasoning is searchers and practitioners alike: “what lies beyond
under-explored. In this work, we analyze static logical reasoning for LLMs?"

the multi-tum strategic reasoning of LLMs Strategic multi-turn reasoning tasks, such as
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Abstract

We argue that auto-regressive LLMs
by themselves, do planning or self-ver
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
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Abstract

There have been widespread claims about Large Language Models (LLMs) being
able to successfully verify or self-critique their candidate solutions in reasoning
problems in an iterative mode. Intrigued by those claims, in this paper we set out
to investigate the verification/self-critiquing abilities of large language models in
the context of planning. We evaluate a planning system that employs LLMs for
both plan generation and verification. We assess the verifier LLM’s performance
against ground-truth verification, the impact of self-critiquing on plan generation,
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Can we leverage LLMs’ reasoning capabilities for Planning?

» What works for reasoning in LLMs?

* How to leverage it for planning?
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Planning Domain Definition Language (PDDL)

(:action pickup
:parameters (?ob)

:precondition (and Precondition: This condition must be true for
(handempty) this action to execute
(ontable ?o0b))

effect (and Effect: This is a set of conditions, one of which
(not (handempty) ) becomes true when this action is executed

(not (ontable ?o0b))
(holding ?o0b))
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What works for reasoning in LLMs?

e Finetuning
* Instruction tuning (finetuning with instructions)

e Chain-of-Thought prompting
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Finetuning

Adapt a pre-trained general LLM to excel at a specific task (planning) by
training on domain examples.

/> | PomainFile
== | Problem File

¥
H <) % (e
) )
Dataset D;: Set Of ——————— B — —_—>  (a4,a,,..,a,)

Domain File Pre-trained . .
Problem File ) Ine-tune
Plan File LLM LLM Output Plan

CS!
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Finetuning with Negative Examples

Add some failing plans, label them as incorrect, and add them to the
finetuning data.

/> | PomainFile
==| Problem File
¥

[ < ¢ ¢
) )
Dataset D;: Set Of ——————— B —— —_—>  (a4,a,,..,a,)

Domain File Pre-trained . .
Problem File ) Ine-tune
Plan File LLM LLM Output Plan
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Instruction Finetuning

Add Explanations: Instructions teach the model WHAT planning means, not just

PATTERNS in data. Tell it to check preconditions, apply effects, and verity goals.

/> | PomainFile
== | Problem File
v

[ < ¢ ¢
) )
Dataset D;: Set Of B — —_—>  (a4,a,,..,a,)

DO FLE Pre-trained Fi d

Problem File ] Ine-tune Output Plan
Plan File + LLM LLM P
Explanation
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Augment finetuned LLM with Chain-of-Thought Prompting

P
||I v

/> | DomainFile

==| Problem File
Dataset D,
Dataset D,: Setof __

Domain File -
Problem File , (So, ajy, S1)
Plan File + ] N
Explanation Fine- . ' _ (s1,az,52)
Tunin . CoT Output ﬁ
pr uning Fine-tuned P _
LLM (Sn-1, Any Sn)
N
Pre-trained 1
LLM OutputPlan: (a,ay, ..., ax)

Making the model show intermediate reasoning steps for planning instead of
jumping to the final answer.
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Dataset D,

PDDLInstruct

|2 |

>

Domain File
Problem File
Plan File +

Explanation

)

Pre-trained
LLM

:Setof ___

eumnm

Fine- :
>

Tuning :

p
»
Fine-tuned

LLM

t

Dataset D,

-
CoT Output

(S0, a1,51)

(S1,az,572)

(Sna, An, Sn)

Detailed Feedback

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

/> | DomainFile
==| Problem File

Verifier

TR

[VAL] ‘l

v iReason { i 4

X Reason

X Reason

. o -
-------------- I-------------’

Instruction Tuning based on VAL Feedback

-------------------------------------------------------------------------------------------------------------------

?/> Domain File
==|Problem File

Dataset D,
v
(So, a1, S1)
) (51,02, S2)
ﬁ )
Final
LLM '
(Sn-l; an, STL)
Output Plan: (@1, @z, -, an)
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Reasoning Chain Optimization

optimize the model parameters 6, to
improve the generation of high-quality reasoning chains

/ G- m{
t — Ht o 51 VHt Lreasoning (Ht' ‘D)‘reasoning)

{(s;_1,a;,8; f;) : V steps in CoT
plans generated at iteration t}

loss function that measures the quality
of the generated reasoning chains
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Reasoning Chain Optimization: 6] = 6; — 6; Vo, L, casoning(-)

This objective encourages the model to produce step-by-step reasoning that
correctly:

1. checks all necessary preconditions before applying actions;
2. tracks state changes resulting from action effects;
3. verifies that invariants are maintained throughout the plan; and

4. detects logical inconsistencies in proposed plans.

g Slide 12



Reasoning Chain Optimization

t —
Lreasoning (et’ ]D)reasoning) T

1
ted
|Dt | d(si' Siexpec © ) + Afeedback l:feedback
reasoning r
(Si—l'ai'si'fi)E]D)reasoning
0 if action a; is valid

a,re If precondition violation detected

Lfeedback — < o _
a.r¢ if incorrect effect applied

\_ Q4oq If goal not achieved
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End-Task (Final) Performance Optimization

optimize from the reasoning-improved parameters 8] to enhance overall planning

Ht+1 — GTtﬂ o 52 VH[ Lfinal(gzﬂ’ ]D)]L:inal)

{(d;,pj,m{,v}) : V problems j at iteration ¢}

loss function that measures measures how well
the final outputs match the expected answers in
the training data
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End-Task Performance Optimization: 6., = 6 — &, Vor Linu(.)

This objective ensures that
improvements in logical reasoning translate to

practical planning capability of producing accurate plans.
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Empirical Evaluation: Objectives

RQ1: Does logical CoT instruction tuning improve plan validity compared to
standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning
performance?

RQ3: How well does the approach generalize across different planning
domains?
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Empirical Evaluation: Dataset and Models

Three Domains: Benchmark

« Blockworld
o PlanBench: An Extensible Benchmark for Evaluating
o Log IstiCS Large Language Models on Planning and Reasoning

about Change
» Mystery Blocksworld
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Logical CoT instruction tuning improves Plan Validity

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
=19 =10 =16 =10 npn=ils
Blocksworld 28% 78% 72% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64 %
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64 % 69% 72% 78%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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Detailed feedback is better than Binary Feedback

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
=19 =10 =16 =10 npn=ils
Blocksworld 28% 78% 72% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64% 69% 72% 78%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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PDDLInstruct’s improved performance generalizes across domains

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
n=1 n9n=10 79n=16 97n=10 n=15
Blocksworld 28% 78% 72% 84% 89% 91% 94 %
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64 %
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64 % 69% 72% 78%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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Conclusion

« Novel framework leveraging CoT-based instruction
tuning to significantly enhance LLM-based planning.

« Performance of CoT-based instruction tuning depends
on the feedback type.

Limitations:
« Optimizing instruction tuning data.

'\ o
« Finegrained analysis of planning performance. AP~ \
« Comparison with SoTA symbolic planners. \ao\)w

« Extending domain coverage.
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