
PDDL-Instruct: Enhancing
Symbolic Planning Capabilities in LLMs through

Logical Chain-of-Thought Instruction Tuning

Ngoc La* Anthony Favier* Swaroop Mishra† Julie A. Shah*Pulkit Verma*

Microsoft AI

ICAPS 2025 Workshop on Planning in the Era of LLMs

* †

LLMs are good at Reasoning

Slide 2

LLMs are bad at Planning

• What works for reasoning in LLMs?

• How to leverage it for planning?

Can we leverage LLMs’ reasoning capabilities for Planning?

Slide 3

Planning Domain Definition Language (PDDL)

Slide 4

(:action pickup

:parameters (?ob)

:precondition (and
(handempty)
(ontable ?ob))

:effect (and
(not (handempty))
(not (ontable ?ob))
(holding ?ob))

)

Precondition: This condition must be true for
this action to execute

Effect: This is a set of conditions, one of which
becomes true when this action is executed

• Finetuning

• Instruction tuning (finetuning with instructions)

• Chain-of-Thought prompting

What works for reasoning in LLMs?

Slide 5

Finetuning

Slide 6

Pre-trained
LLM

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Adapt a pre-trained general LLM to excel at a specific task (planning) by
training on domain examples.

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File

Finetuning with Negative Examples

Slide 7

Pre-trained
LLM

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Add some failing plans, label them as incorrect, and add them to the
finetuning data.

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File

Instruction Finetuning

Slide 8

Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File +

Explanation

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Add Explanations: Instructions teach the model WHAT planning means, not just
PATTERNS in data. Tell it to check preconditions, apply effects, and verify goals.

Augment finetuned LLM with Chain-of-Thought Prompting

Slide 9

Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File +

Explanation Fine-

Tuning
Fine-tuned

LLM

⟨𝑠!, 𝑎", 𝑠"⟩

Fine-tuned
LLM ⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

Domain File
Problem File

⟨𝑠$, 𝑎!, 𝑠!⟩

CoT Output

Dataset 𝔻"

⟨𝑎!, 𝑎", … , 𝑎#⟩Output Plan:

Making the model show intermediate reasoning steps for planning instead of
jumping to the final answer.

PDDLInstruct

Slide 10

⟨𝑠!, 𝑎", 𝑠"⟩

Fine-tuned
LLM

Final
LLM

Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File +

Explanation

⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

Domain File
Problem File

Verifier
[VAL]

⟨𝑠$, 𝑎!, 𝑠!⟩

.

.

.

⟨𝑠!, 𝑎", 𝑠"⟩

⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

⟨𝑠$, 𝑎!, 𝑠!⟩

Domain File
Problem File

Instruction Tuning based on VAL Feedback

CoT Output

Dataset 𝔻"
Dataset 𝔻test

⟨𝑎!, 𝑎", … , 𝑎#⟩Output Plan:

Reason

Reason

Reason

Fine-

Tuning

B
in

ar
y

Fe
ed

ba
ck

D
et

ai
le

d
Fe

ed
ba

ck

Reasoning Chain Optimization

Slide 11

θ!" = 𝜃! − 𝛿# ∇$! L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 (𝜃! , 𝔻"%&'()*)+
!)

loss function that measures the quality
of the generated reasoning chains

{ 𝑠!"#, 𝑎! , 𝑠! , 𝑓! ∶ ∀ steps in CoT
plans generated at iteration 𝑡}

optimize the model parameters 𝜃" to
improve the generation of high-quality reasoning chains

This objective encourages the model to produce step-by-step reasoning that
correctly:

1. checks all necessary preconditions before applying actions;

2. tracks state changes resulting from action effects;

3. verifies that invariants are maintained throughout the plan; and

4. detects logical inconsistencies in proposed plans.

Reasoning Chain Optimization: θ!" = 𝜃! − 𝛿# ∇$! L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(.)

Slide 12

Reasoning Chain Optimization

Slide 13

L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 𝜃! , 𝔻"%&'()*)+
! =

1
|𝔻"%&'()*)+

! |
-

'#$%,&#,'#,-# ∈𝔻&'()*+#+,
!

𝑑 𝑠!, 𝑠!
"#$"%&"' + 𝜆(""')*%+ L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 =

0 if action 𝑎- is valid

𝛼./0 if precondition violation detected

𝛼011 if incorrect effect applied

𝛼2345 if goal not achieved

End-Task (Final) Performance Optimization

Slide 14

𝜃!3# = θ!" − 𝛿4 ∇$!& L𝑓𝑖𝑛𝑎𝑙(𝜃!
" , 𝔻-*)&5!)

loss function that measures measures how well
the final outputs match the expected answers in
the training data

{ 𝑑+ , 𝑝+ , 𝜋!, , 𝑣+, ∶ ∀ problems 𝑗 at iteration 𝑡}

optimize from the reasoning-improved parameters θ"/ to enhance overall planning

This objective ensures that

improvements in logical reasoning translate to

practical planning capability of producing accurate plans.

End-Task Performance Optimization: 𝜃!3# = θ!" − 𝛿4 ∇$!& L𝑓𝑖𝑛𝑎𝑙(.)

Slide 15

RQ1: Does logical CoT instruction tuning improve plan validity compared to
standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning
performance?

RQ3: How well does the approach generalize across different planning
domains?

Empirical Evaluation: Objectives

Slide 16

Empirical Evaluation: Dataset and Models

Three Domains:
• Blockworld
• Logistics
• Mystery Blocksworld

Three Models:
• Llama-3-8B
• GPT-4
• Gemma-3-270M

Benchmark

Slide 17

Logical CoT instruction tuning improves Plan Validity

Slide 18

Detailed feedback is better than Binary Feedback

Slide 19

PDDLInstruct’s improved performance generalizes across domains

Slide 20

• Novel framework leveraging CoT-based instruction
tuning to significantly enhance LLM-based planning.

• Performance of CoT-based instruction tuning depends
on the feedback type.

Limitations:

• Optimizing instruction tuning data.

• Finegrained analysis of planning performance.

• Comparison with SoTA symbolic planners.

• Extending domain coverage.

Conclusion

pulkitverma.net | pulkitv@csail.mit.edu Slide 21

