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LLMs are good at Reasoning
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LLMs are bad at Planning



• What works for reasoning in LLMs?

• How to leverage it for planning?

Can we leverage LLMs’ reasoning capabilities for Planning?
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Planning Domain Definition Language (PDDL)
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(:action pickup

:parameters (?ob)

:precondition (and 
(handempty)
(ontable ?ob))

:effect (and 
(not (handempty))
(not (ontable ?ob))
(holding ?ob))

)

Precondition: This condition must be true for 
this action to execute

Effect: This is a set of conditions, one of which 
becomes true when this action is executed



• Finetuning

• Instruction tuning (finetuning with instructions)

• Chain-of-Thought prompting

What works for reasoning in LLMs?
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Finetuning
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Pre-trained
LLM

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Adapt a pre-trained general LLM to excel at a specific task (planning) by 
training on domain examples.

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File



Finetuning with Negative Examples
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Pre-trained
LLM

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Add some failing plans, label them as incorrect, and add them to the 
finetuning data.

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File 



Instruction Finetuning
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Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File +

Explanation

Fine-tuned
LLM

Domain File
Problem File

⟨𝑎!, 𝑎", … , 𝑎#⟩

Output Plan

Add Explanations: Instructions teach the model WHAT planning means, not just 
PATTERNS in data. Tell it to check preconditions, apply effects, and verify goals.



Augment finetuned LLM with Chain-of-Thought Prompting 
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Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File + 

Explanation Fine-

Tuning
Fine-tuned

LLM

⟨𝑠!, 𝑎", 𝑠"⟩

Fine-tuned
LLM ⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

Domain File
Problem File

⟨𝑠$, 𝑎!, 𝑠!⟩

CoT Output

Dataset 𝔻"

⟨𝑎!, 𝑎", … , 𝑎#⟩Output Plan:

Making the model show intermediate reasoning steps for planning instead of 
jumping to the final answer.



PDDLInstruct
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⟨𝑠!, 𝑎", 𝑠"⟩

Fine-tuned
LLM

Final
LLM

Pre-trained
LLM

Dataset 𝔻!: Set of
• Domain File
• Problem File
• Plan File + 

Explanation

⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

Domain File
Problem File

Verifier
[VAL]

⟨𝑠$, 𝑎!, 𝑠!⟩

.

.

.

⟨𝑠!, 𝑎", 𝑠"⟩

⟨𝑠# !, 𝑎#, 𝑠#⟩-

.

.

.

⟨𝑠$, 𝑎!, 𝑠!⟩

Domain File
Problem File

Instruction Tuning based on VAL Feedback

CoT Output

Dataset 𝔻"
Dataset 𝔻test

⟨𝑎!, 𝑎", … , 𝑎#⟩Output Plan:

Reason

Reason

Reason

Fine-

Tuning
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Reasoning Chain Optimization
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θ!" = 𝜃! − 𝛿# ∇$! L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 (𝜃! , 𝔻"%&'()*)+
! )

loss function that measures the quality
of the generated reasoning chains

{ 𝑠!"#, 𝑎! , 𝑠! , 𝑓! ∶ ∀ steps in CoT
plans generated at iteration 𝑡}

optimize the model parameters 𝜃" to 
improve the generation of high-quality reasoning chains



This objective encourages the model to produce step-by-step reasoning that 
correctly:

1. checks all necessary preconditions before applying actions;

2. tracks state changes resulting from action effects; 

3. verifies that invariants are maintained throughout the plan; and 

4. detects logical inconsistencies in proposed plans.

Reasoning Chain Optimization: θ!" = 𝜃! − 𝛿# ∇$! L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(. )
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Reasoning Chain Optimization
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L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 𝜃! , 𝔻"%&'()*)+
! =

1
|𝔻"%&'()*)+

! |
-

'#$%,&#,'#,-# ∈𝔻&'()*+#+,
!

𝑑 𝑠!, 𝑠!
"#$"%&"' + 𝜆(""')*%+ L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 =

0       if action 𝑎- is valid 

𝛼./0 if precondition violation detected

𝛼011 if incorrect effect applied

𝛼2345 if goal not achieved



End-Task (Final) Performance Optimization
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𝜃!3# = θ!" − 𝛿4 ∇$!& L𝑓𝑖𝑛𝑎𝑙(𝜃!
" , 𝔻-*)&5! )

loss function that measures measures how well 
the final outputs match the expected answers in 
the training data

{ 𝑑+ , 𝑝+ , 𝜋!, , 𝑣+, ∶ ∀ problems 𝑗 at iteration 𝑡}

optimize from the reasoning-improved parameters θ"/ to enhance overall planning



This objective ensures that 

improvements in logical reasoning translate to 

practical planning capability of producing accurate plans.

End-Task Performance Optimization: 𝜃!3# = θ!" − 𝛿4 ∇$!& L𝑓𝑖𝑛𝑎𝑙(. )
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RQ1: Does logical CoT instruction tuning improve plan validity compared to 
standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning 
performance?

RQ3: How well does the approach generalize across different planning 
domains?

Empirical Evaluation: Objectives
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Empirical Evaluation: Dataset and Models

Three Domains:
• Blockworld
• Logistics
• Mystery Blocksworld

Three Models:
• Llama-3-8B
• GPT-4
• Gemma-3-270M

Benchmark
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Logical CoT instruction tuning improves Plan Validity
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Detailed feedback is better than Binary Feedback
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PDDLInstruct’s improved performance generalizes across domains
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• Novel framework leveraging CoT-based instruction 
tuning to significantly enhance LLM-based planning.

• Performance of CoT-based instruction tuning depends 
on the feedback type.

Limitations:

• Optimizing instruction tuning data.

• Finegrained analysis of planning performance.

• Comparison with SoTA symbolic planners.

• Extending domain coverage.

Conclusion
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