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Abstract

It is essential for users to understand what their AI systems can and can’t do in order
to use them safely. However, the problem of enabling users to assess AI systems
with sequential decision-making (SDM) capabilities is relatively understudied.
This paper presents a new approach for modeling the capabilities of black-box AI
systems that can plan and act, along with the possible effects and requirements for
executing those capabilities in stochastic settings. We present an active-learning
approach that can effectively interact with a black-box SDM system and learn an
interpretable probabilistic model describing its capabilities. Theoretical analysis
of the approach identifies the conditions under which the learning process is
guaranteed to converge to the correct model of the agent; empirical evaluations
on different agents and simulated scenarios show that this approach is few-shot
generalizable and can effectively describe the capabilities of arbitrary black-box
SDM agents in a sample-efficient manner.

1 Introduction

AI systems are becoming increasingly complex, and it is becoming difficult even for AI experts to
ascertain the limits and capabilities of such systems, as they often use black-box policies for their
decision-making process [Popov et al., 2017, Greydanus et al., 2018]. E.g., consider an elderly
couple with a household robot that learns and adapts to their specific household. How would they
determine what it can do, what effects their commands would have, and under what conditions?
Although we are making steady progress on learning for sequential decision-making (SDM), the
problem of enabling users to understand the limits and capabilities of their SDM systems is largely
unaddressed. Moreover, as the example above illustrates, the absence of reliable approaches for
user-driven capability assessment of AI systems limits their inclusivity and real-world deployability.

This paper presents a new approach for Query-based Autonomous Capability Estimation (QACE) of
black-box SDM systems in stochastic settings. Our approach uses a restricted form of interaction
with the input SDM agent (referred to as SDMA) to learn a probabilistic model of its capabilities.
The learned model captures high-level user-interpretable capabilities, such as the conditions under
which an autonomous vehicle could back out of a garage, or reach a certain target location, along
with the probabilities of possible outcomes of executing each such capability. The resulting learned
models directly provide interpretable representations of the scope of SDMA’s capabilities. They
can also be used to enable and support approaches for explaining SDMA’s behavior that require
closed-form models (e.g., Sreedharan et al. [2018]). We assume that the input SDMA provides
a minimal query-response interface that is already commonly supported by contemporary SDM
systems. In particular, SDMA should reveal capability names defining how each of its capabilities
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can be invoked, and it should be able to accept user-defined instructions in the form of sequences of
such capabilities. These requirements are typically supported by SDM systems by definition.

The main technical problem for QACE is to automatically compute “queries” in the form of instruction
sequences and policies, and to learn a probabilistic model for each capability based on SDMA’s
“responses” in the form of executions. Depending on the scenario, these executions can be in the real
world, or in a simulator for safety-critical settings. Since the set of possible queries of this form is
exponential in the state space, naïve approaches for enumerating and selecting useful queries based
on information gain metrics are infeasible.

Main contributions This paper presents the first approach for query-based assessment of SDMAs
in stochastic settings with minimal assumptions on SDMA internals. In addition, it is also the first
approach for reducing query synthesis for SDMA assessment to full-observable non-deterministic
(FOND) planning [Cimatti et al., 1998]. Empirical evaluation shows that these contributions enable
our approach to carry out scalable assessment in both embodied and vanilla SDMAs.

We express the learned models using an input concept vocabulary that is known to the target user group.
Such vocabularies span multiple tasks and environments. They can be acquired through parallel
streams of research on interactive concept acquisition [Kim et al., 2015, Lage and Doshi-Velez, 2020]
or explained to users through demonstrations and training [Schulze et al., 2000]. These concepts can
be modeled as binary-valued predicates that have their associated evaluation functions [Mao et al.,
2022]. We use the syntax and semantics of a well-established relational SDM model representation
language, Probabilistic Planning Domain Definition Language (PPDDL) [Younes and Littman, 2004],
to express the learned models.

Related work on the problem addresses model learning from passively collected observations of
agent behavior [Pasula et al., 2007, Martínez et al., 2016, Juba and Stern, 2022]; and by exploring
the state space using simulators [Chitnis et al., 2021, Mao et al., 2022]. However, passive learning
approaches can learn incorrect models as they do not have the ability to generate interventional or
counterfactual data; exploration techniques can be sample inefficient because they don’t take into
account uncertainty and incompleteness in the model being learned to guide their exploration (see
Sec. 7 for a greater discussion).

In addition to the key contributions mentioned earlier, our results (Sec. 6) show that the approaches
for query synthesis in this paper do not place any additional requirements on black-box SDMAs but
significantly improve the following factors: (i) convergence rate and sample efficiency for learning
relational models of SDMAs with complex capabilities, (ii) few-shot generalizability of learned
models to larger environments, and (iii) accuracy of the learned model w.r.t. the ground truth SDMA
capabilities. convergence rate to the sound and complete model.

2 Preliminaries

SDMA setup We consider SDMAs that operate in stochastic and fully observable environments.
An SDMA can be represented as a 3-tuple ⟨X , C, T ⟩, where X is the environment state space that the
SDMA operates in, C is the set of SDMA’s capabilities (capability names, e.g., “place object x at
location y” or “arrange table x”) that the SDMA can execute, and T : X × C → µX is the stochastic
black-box transition model determining the effects of SDMA’s capabilities on the environment. Here,
µX is the space of probability distributions on X . Note that the semantics of C are not known to the
user(s) and X may not be user-interpretable. The only information available about the SDMA is the
instruction set in the form of capability names, represented as CN . This isn’t a restricting assumption
as the SDMAs must reveal their instruction sets for usability.

Running Example Consider a cafe server robot that can pick and place items like plates, cans, etc.,
from various locations in the cafe, like the counter, tables, etc., and also move between these locations.
A capability pick-item (?location ?item) would allow a user to instruct the robot to pick up
an item like a soda can for any location. However, without knowing its description, the user would
not know under what conditions the robot could execute this capability and what the effects will be.

Object-centric concept representation We aim to learn representations that are generalizable, i.e.,
the transition dynamics learned should be impervious to environment-specific properties such as num-
bers and configurations of objects. Additionally, the learned capability models should hold in different
settings of objects in the environment as long as the SDMA’s capabilities does not change. To this
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Figure 1: The cafe server robot en-
vironment in OpenRave simulator.

effect, we learn the SDMA’s transition model in terms of in-
terpretable concepts that can be represented using first-order
logic predicates. This is a common formalism for express-
ing the symbolic models of SDMAs [Zhi-Xuan et al., 2020,
Mao et al., 2022]. We formally represent them using a set
of object-centric predicates P . The set of predicates used for
cafe server robot in Fig. 1 can be (robot-at ?location),
(empty-arm), (has-charge), (at ?location ?item), and
(holding ?item). Here, ? precedes an argument that can be
replaced by an object in the environment. E.g., (robot-at
tableRed) means “robot is at the red table.” As mentioned
earlier, we assume these predicates along with their Boolean evaluation functions (which evaluate to
true if predicate is true in a state) are available as input. Learning such predicates is also an interesting
but orthogonal direction of research [Mao et al., 2022, Sreedharan et al., 2022, Das et al., 2023].

Abstraction Using an object-centric predicate representation induces an abstraction of environment
states X to high-level logical states S expressible in predicate vocabulary P . This abstraction can be
formalized using a surjective function f : X → S . E.g., in the cafe server robot, the concrete state x
may refer to roll, pitch, and yaw values. On the other hand, the abstract state s corresponding to x
will consist of truth values of all the predicates [Srivastava et al., 2014, 2016, Mao et al., 2022].

(:capability pick-item
:parameters (?location ?item)
:precondition (and

(empty-arm) (has-charge)
(robot-at ?location)
(at ?location ?item))

:effect (and (probabilistic
0.7 (and (not (empty-arm))

(not (at ?location ?item))
(holding ?item))

0.2 (and (not (has-charge)))
0.1 (and))) #No-change

Figure 2: PPDDL description for the
cafe server robot’s pick-item capability.

Probabilistic transition model Abstraction induces an
abstract transition model T ′ : S × C → µS, where
µS is the space of probability distributions on S. This
is done by converting each transition ⟨x, c, x′⟩ ∈ T
to ⟨s, c, s′⟩ ∈ T ′ using predicate evaluators such that
f(x) = s and f(x′) = s′. Now, T ′ can be expressed as
model M that is a set of parameterized action (capability
in our case) schema, where each c ∈ C is described as
c = ⟨name(c), pre(c), eff(c)⟩, where name(c) ∈ CN refers
to name and arguments (parameters) of c; pre(c) refers
to the preconditions of the capability c represented as a
conjunctive formula defined over P that must be true in a
state to execute c; and eff(c) refers to the set of conjunctive
formulas over P , each of which becomes true on executing
c with an associated probability. The result of executing
c for a model M is a state c(s) = s′ such that PM (s′|s, c) > 0 and one (and only one) of the
effects of c becomes true in s′. We also use ⟨s, c, s′⟩ triplet to refer to c(s) = s′. This represen-
tation is similar to the Probabilistic Planning Domain Definition Language (PPDDL), which can
compactly describe the SDMA’s capabilities. E.g., the cafe server robot has three capabilities (shown
here as name(args)): pick-item(?location ?item); place-item(?location ?item); and
move(?source ?destination). The description of pick-item in PPDDL is shown in Fig. 2.

Variational Distance Given a black-box SDMAA, we learn the probabilistic model M representing
its capabilities. To measure how close M is to the true SDMA transition model T ′, we use variational
distance – a standard measure in probabilistic-model learning literature [Pasula et al., 2007, Martínez
et al., 2016, Ng and Petrick, 2019, Chitnis et al., 2021]. It is based on the total variation distance
between two probability distributions T ′ and M , given as:

δ(T ′,M) =
1

|D|
∑

⟨s,c,s′⟩∈D

∣∣PT ′(s′|s, c)− PM (s′|s, c)
∣∣ (1)

whereD is the set of test samples (⟨s, c, s′⟩ triplets) that we generate using T ′ to measure the accuracy
of our approach. As shown by Pinsker [1964], δ(T ′,M) ≤

√
0.5×DKL(T ′ ∥M), where DKL is the

KL divergence.

3 The Capability Assessment Task

In this work, we aim to learn a probabilistic transition model T ′ of a black-box SDMA as a model M ,
given a set of user-interpretable concepts as predicates P along with their evaluation functions, and
the capability names CN corresponding to the SDMA’s capabilities. Formally, the assessment task is:
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Definition 1. Given a set of predicates P along with their Boolean evaluation functions, capability
names CN , and a black-box SDMA A in a fully observable, stochastic, and static environment, the
capability assessment task ⟨A,P, CN , T ′⟩ is defined as the task of learning the probabilistic transition
model T ′ of the SDMA A expressed using P .

The solution to this task is a model M that should ideally be the same as T ′ for correctness. In
practice, T ′ need not be in PPDDL, so the correctness should be evaluated along multiple dimensions.

Notions of model correctness As discussed in Sec. 2, variational distance is one way to capture the
correctness of the learned model. This is useful when the learned model and the SDMA’s model are
not in the same representation. The correctness of a model can also be measured using qualitative
properties such as soundness and completeness. The learned model M should be sound and complete
w.r.t. the SDMA’s high-level model T ′, i.e., for all combinations of c, s, and s′, if a transition ⟨s, c, s′⟩
is possible according to T ′, then it should also be possible under M , and vice versa. Here, ⟨s, c, s′⟩
is consistent with M (or T ′) if P (s′|s, c) > 0 according to M (or T ′). We formally define this as:

Definition 2. Let ⟨A,P, CN , T ⟩ be a capability assessment task with a learned model M as its
solution. M is sound iff each transition ⟨s, c, s′⟩ consistent with M is also consistent with T ′. M is
complete iff every transition that is consistent with T ′ is also consistent with M .

This also means that if T ′ is also a PPDDL model, then (i) any precondition or effect learned as part
of M is also present in T ′ (soundness), and; (ii) all the preconditions and effects present in T ′ should
be present in M (completeness). Additionally, a probabilistic model is correct if it is sound and
complete, and the probabilities for each effect set in each of its capabilities are the same as that of T ′.

4 Interactive Capability Assessment

To solve the capability assessment task, we must identify the preconditions and effects of each
capability in terms of conjunctive formulae expressed over P . At a very high-level, we do this
by identifying that a probabilistic model can be expressed as a set of capabilities c ∈ C, each of
which has two places where we can add a predicate p, namely precondition and effect. We call these
locations within each capability. We then enumerate through these 2×|C| locations and figure out the
correct form of each predicate at each of those locations. To do this we need to consider three forms:
(i) adding it as p, i.e., the predicate must be true for that capability to execute (when the location is
precondition), or it becomes true on executing it (when the location is effect); (ii) adding it as not(p),
i.e., the predicate must be false for that capability to execute (when the location is precondition), or it
becomes false on executing it (when the location is effect); (iii) not adding it at all, i.e., the capability
execution does not depend on it (when the location is precondition), or the capability does not modify
it (when the location is effect).

Model pruning LetM represent the set of all possible transition models expressible in terms of
P and C. We must prune the set of possible models to solve the capability assessment task, ideally
bringing it to a singleton. We achieve this by posing queries to the SDMA and using the responses to
the queries as data to eliminate the inconsistent models from the set of possible modelsM.

Given a location (precondition or effect in a capability), the set of models corresponding to a predicate
will consist of 3 transition models: one each corresponding to the three ways we can add the predicate
in that location. We call these three possible models MT , MF , MI , corresponding to adding p (true),
not(p) (false), and not adding p (ignored), respectively at that location.

Note that the actual set of possible transition models is infinite due to the probabilities associated
with each transition. To simplify this, we first constrain the set of possible models by ignoring the
probabilities, and learn a non-deterministic transition model (commonly referred to as a FOND
model [Cimatti et al., 1998]) instead of a probabilistic one. We later learn the probabilities using
maximum likelihood estimation based on the transitions observed as part of the query responses.

Simulator use Using the standard assumption of a simulator’s availability in research on SDM,
QACE solves the capability assessment task (Sec. 3) by issuing queries to the SDMA and observing its
responses in the form of its execution in the simulator. In non-safety-critical scenarios, this approach
can work without a simulator too. The interface required to answer the queries is rudimentary as the
SDMA A need not have access to its transition model T ′ (or T ). Rather, it should be able to interact
with the environment (or a simulator) to answer the queries. We next present the types of queries
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we use, followed by algorithms for generating them and for inferring the SDMA’s model using its
responses to the queries.

Policy simulation queries (QPS) These queries ask the SDMA A to execute a given policy multiple
times. More precisely, a QPS query is a tuple ⟨sI , π,G, α, η⟩ where sI ∈ S is a state, π is a partial
policy that maps each reachable state to a capability, G is a logical predicate formula that expresses a
stopping condition, α is an execution cutoff bound representing the maximum number of execution
steps, and η is an attempt limit. Note that the query (including the policy) is created entirely by our
solution approach without any interaction with the SDMA. QPS queries ask A to execute π, η times.
In each iteration, execution continues until either the stopping goal condition G or the execution
bound α is reached. E.g., “Given that the robot, soda-can, plate1, bowl3 are at table4, what will
happen if the robot follows the following policy: if there is an item on the table and arm is empty,
pick up the item; if an item is in the hand and location is not dishwasher, move to the dishwasher; if
an item is in the hand and location is dishwasher, place the item in the dishwasher?” Such queries
will be used to learn both preconditions and effects (Sec. 4.3).

A response to such queries is an execution in the simulator and η traces of these simulator executions.
Formally, the response θPS for a query qPS ∈ QPS is a tuple ⟨b, ζ⟩, where b ∈ {⊤,⊥} indicates weather
if the SDMA reached a goal state sG |= G, and ζ are the corresponding triplets ⟨s, c, s′⟩ generated
during the η policy executions. If the SDMA reaches sG even once during the η simulations, b is ⊤,
representing that the goal can be reached using this policy. Next, we discuss how these responses are
used to prune the set of possible models and learn the correct transition model of the SDMA.

4.1 Query-based Autonomous Capability Estimation (QACE) Algorithm

Algorithm 1: QACE Algorithm
Input : predicates P; capability names CN ;

state s; SDMA A; hyperparameters α, η;
FOND Planner ρ

Output : M
1 L← {pre, eff} × CN
2 M∗ ← initializeModel (P, CN )
3 for each ⟨l, p⟩ ∈ ⟨L,P⟩ do
4 Generate MT ,MF ,MI by setting p at l in M∗

5 for each pair Mi,Mj in {MT ,MF ,MI} do
6 q ← generateQuery(Mi,Mj , α, η, s, ρ)
7 θA,S← getResponse(q,A, s)
8 M∗ ← pruneModels (θA,Mi,Mj)
9 M∗ ← learn possible stochastic effects of

capability with cN in l using ζ (in θA)

10 M ← learnProbabilitiesOfStochasticEffects(ζ,M∗)
11 return M

We now discuss how we solve the capability
assessment task using the Query-based Au-
tonomous Capability Estimation algorithm
(Alg. 1), which works in two phases. In the
first phase, QACE learns all capabilities’ pre-
conditions and non-deterministic effects us-
ing the policy simulation queries (Sec. 4.2).
In the second phase, QACE converts the non-
deterministic effects of capabilities into prob-
abilistic effects (Sec. 4.3). We now explain
the learning portion (lines 3-11) in detail.

QACE first initializes a model M∗ over
the predicates in P with capabilities having
names cN ∈ CN . All the preconditions and
effects for all capabilities are empty in this
initial model. QACE uses M∗ to maintain
the current partially learned model. QACE
iterates over all combinations of L and P
(line 4). For each pair, QACE creates 3 can-
didate models MT , MF , and MI as mentioned earlier. It then takes 2 of these (line 5) and generates
a query q (line 6) such that responses to the query q from the two models are logically inconsistent
(see Sec. 4.2). The query q is then posed to the SDMA A whose response is stored as θA (line 7).
QACE finally prunes at least one of the two models by comparing their responses (which are logically
inconsistent) with the response θA of the SDMA on that query (line 8). QACE also updates the
effects of all models in the set of possible models to speed up the learning process (line 9). Finally, it
learns the probabilities of the observed stochastic effects using maximum likelihood estimation (line
10). An important feature of the algorithm (similar to PLEX [Mehta et al., 2011] and AIA [Verma
et al., 2021]) is that it keeps track of all the locations where it hasn’t identified the correct way of
adding a predicate. The next section presents our approach for generating the queries in line 6.

4.2 Algorithms for Query Synthesis

One of the main challenges in interactive model learning is to generate the queries we discussed above
and to learn the agent’s model using them. Although active learning [Settles, 2012] addresses the
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related problem of figuring out which data sets to request labels for, vanilla active learning approaches
are not directly applicable here because the possible set of queries expressible using the literals in a
domain is vast: it is the set of all policies expressible using CN . Query-based learning approaches use
an estimate of the utility of a query to select “good” queries. This can be a multi-valued measure
like information gain [Sollich and Saad, 1994], value [Macke et al., 2021], etc. or a binary-valued
attribute like distinguishability [Verma et al., 2021], etc. We use distinguishability as a measure to
identify useful queries. According to it, a query q is distinguishing w.r.t. two models if responses by
both models to q are logically inconsistent. We now discuss methods for generating such queries.

Generating distinguishing queries QACE automates the generation of queries using search. As
part of the algorithm, a model M∗ is used to generate the three possible models MT ,MF , and MI

for a specific predicate p and location l combination. Other than the predicate p at location l, these
models are exactly the same. A forward search is used to generate the policy simulation queries
with two possible models Mi,Mj chosen randomly from MT , MF , and MI . The forward search
is initiated with an initial state ⟨si0, sj0⟩ as the root of the search tree, where si0 and sj0 are copies of
the same state s0 from which we are starting the search. The edges of the tree correspond to the
capabilities with arguments replaced with objects in the environment. Nodes correspond to the two
states resulting from applying the capability in the parent state according to the two possible models.
E.g., consider that a transition ⟨si0, c, si1⟩ is possible according to the model Mi, and let ⟨sj0, c, sj1⟩ be
the corresponding transition (by applying the same effect set of c as hi) according to the model Mj .
Now there will be an edge in the forward search tree with label c such that parent node is ⟨si0, sj0⟩ and
child node is ⟨si1, sj1⟩. The search process terminates when a node ⟨si, sj⟩ is reached such that either
the states si and sj don’t match, or the preconditions of the same capability were met in the state
according to one of the possible models but not according to the other. Vanilla forward search scales
poorly with the number of capabilities and objects in the environment. To address this we reduce the
problem to a fully observable non deterministic (FOND) planning problem. This can be solved by
any FOND planner. The output of this search is a policy π to reach a state where the two models,
Mi and Mj predict different outcomes. Additional details about the reduction and an example of
the output policy are available in the extended version of the paper [Verma et al., 2023]. The query
⟨sI , π,G, α, η⟩ resulting from this search is such that sI is set to the initial state s0, π is the output
policy, G is the goal state where the models’ responses doesn’t match, α and η are hyperparameters
as mentioned earlier. We next see how to use these queries to prune out the incorrect models.

4.3 Learning Probabilistic Models Using Query Responses

At this point, QACE already has a query such that the response to the query by the two possible
models does not match. We next see how to prune out the model inconsistent with the SDMA. QACE
poses the query generated earlier to the SDMA and gets its response (line 7 in Alg. 1). If the SDMA
can successfully execute the policy, QACE compares the response of the two models with that of
the SDMA and prunes out the model whose response does not match with that of the SDMA. If the
SDMA cannot execute the policy, i.e., SDMA fails to execute some capability in the policy, then the
models cannot be pruned directly. In such a case, a new initial state s0 must be chosen to generate a
new query starting from that initial state. Since generating new queries for the same pair of models
can be time consuming, we preempt this issue by creating a pool of states S that can execute the
capabilities using a directed exploration of the state space with the current partially learned model as
discussed below.

Directed exploration A partially learned model is a model where one or more capabilities have
been learned (the correct preconditions have been identified for each capability and at least one effect
is learned). Once we have such a model, we can do a directed exploration of the state space for these
capabilities by only executing a learned capability if the preconditions are satisfied. This helps in
reducing the sample complexity since the simulator is only called when we know that the capability
will execute successfully, thereby allowing us to explore different parts of the state space efficiently.
If a capability’s preconditions are not learned, all of its groundings might need to be executed from
the state. In the worst case, to escape local minima where no models can be pruned, we would need
to perform a randomized search for a state where a capability is executable by the SDMA. In practice,
we observed that using directed exploration to generate a pool of states gives at least one grounded
capability instance. This helps ensure that during query generation, the approach does not spend a
long time searching for a state where a capability is executable.
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Learning probabilities of stochastic effects After QACE learns the non-deterministic model, to
learn the probabilities of the learned effects it uses the transitions collected as part of responses to
queries. This is done using Maximum Likelihood Estimation (MLE) [Fisher, 1922]. For each triplet
⟨s, c, s′⟩ seen in the collected data, let countc be the number of times a capability c is observed. Now,
for each effect set, the probability of that effect set becoming true on executing that capability c is
given as the number of times that effect is observed on executing c divided by countc. As we increase
the value of the hyperparameter η, we increase the number of collected triplets, thereby improving
the probability values calculated using this approach.

5 Theoretical Analysis and Correctness

We now discuss how the model M of SDMAA learned using QACE fulfills the notions of correctness
(Sec. 3) discussed earlier. We first show that the model M∗ learned before line 10 of QACE (Alg. 1)
is sound and complete according to Def. 2. The proofs for the theorems are available in the extended
version of the paper [Verma et al., 2023].
Theorem 1. Let A be a black-box SDMA with a ground truth transition model T ′ expressible in
terms of predicates P and a set of capabilities C. Let M∗ be the non-deterministic model expressed in
terms of predicates P∗ and capabilities C, and learned using the query-based autonomous capability
estimation algorithm (Alg. 1) just before line 10. Let CN be a set of capability names corresponding
to capabilities C. If P∗ ⊆ P , then the model M∗ is sound w.r.t. the SDMA transition model T ′.
Additionally, if P∗ = P , then the model M∗ is complete w.r.t. the SDMA transition model T ′.

Next, we show that the final step of learning the probabilities for all the effects in each capability
converges to the correct probability distribution under the assumption that all the effects of a capability
are identifiable. When a capability c is executed in the environment, one of its effects ei(c) ∈ eff(c)
will be observed in the environment. To learn the correct probability distribution in M , we should
accurately identify that effect ei(c). Hence, the set of effects is identifiable if at least one state exists
in the environment from which each effect can be uniquely identified when the capability is executed.
An example of this is available in the extended version of the paper [Verma et al., 2023].
Theorem 2. Let A be a black-box SDMA with a ground truth transition model T ′ expressible in
terms of predicates P and a set of capabilities C. Let M be the probabilistic model expressed in
terms of predicates P∗ and capabilities C, and learned using the query-based autonomous capability
estimation algorithm (Alg. 1). Let P = P∗ and M be generated using a sound and complete non-
deterministic model M∗ in line 11 of Alg. 1, and let all effects of each capability c ∈ C be identifiable.
The model M is correct w.r.t. the model T ′ in the limit as η tends to∞, where η is hyperparameter in
query QPS used in Alg. 1.

6 Empirical Evaluation

We implemented Alg. 1 in Python to evaluate our approach empirically.1 We found that our query
synthesis and interactive learning process leads to (i) few shot generalization; (ii) convergence to a
sound and complete model; and (iii) much greater sample efficiency and accuracy for learning lifted
SDM models with complex capabilities as compared to the baseline.

Setup We used a single training problem with few objects (≤ 7) for all methods in our evaluation
and used a test set that was composed of problems containing object counts larger than those in the
training set. We ran the experiments on a cluster of Intel Xeon E5-2680 v4 CPUs with CentOS 7.9
running at 2.4 GHz with a memory limit of 8 GB and a time limit of 4 hours. We used PRP [Muise
et al., 2012] as the FOND planner to generate the queries (line 6 in Alg. 1). For QACE, we used
α = 2d where d is the maximum depth of policies used in queries generated by QACE and η = 5. All
of the methods in our empirical evaluation receive the same training and test sets and are evaluated on
the same platform. We used Variational Distance (VD) as presented in Eq. 1 to evaluate the quality of
the learned SDMA models.

Baseline selection We used the closest SOTA related work, GLIB [Chitnis et al., 2021] as a baseline.
GLIB learns a probabilistic model of an intrinsically motivated agent by sampling goals far away from
the initial state and making the agent try to reach them. This can be adapted to an assessment setting

1Source code available at https://github.com/AAIR-lab/QACE
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Figure 3: Screen captures from the Cafe Server Robot simulation. The complete environment is
shown in the image on the left. The image grid on the right shows screen captures of multiple steps
of the robot delivering a soda-can to a table.

by moving goal-generation based sampling outside the agent, and, to the best of our knowledge, no
existing approach addresses the problem of creating intelligent questions for an SDMA. GLIB has two
versions, GLIB-G, which learns the model as a set of grounded noisy deictic rules (NDRs) [Pasula
et al., 2007], and GLIB-L, which learns the model as a set of lifted NDRs. We used the same
hyperparameters as published for the Warehouse Robot and Driving Agent and performed extensive
tuning for the others and report results with the best performing settings.

The models learned using GLIB cannot be used to calculate the variational distance presented in
Eq. 1 because for each capability GLIB learns a set of NDRs rather than a unique NDR. In order to
maintain parity in comparison, we use GLIB’s setup to calculate an approximation of the VD. Using
it, we sample 3500 random transitions ⟨s, c, s′⟩ from the ground truth transition model T ′ using
problems in the test set to compute a dataset of transitions D. The sample-based, approximate VD is
then given as: 1

|D|
∑

d∈D 1[s′ ̸=cM (s)], where cM (s) samples the transition using the capability in the
learned model output by each method. In Fig. 5, we compare the approximate variational distance of
the three approaches w.r.t. D as we increase the learning time. Note that we also evaluated VD for
QACE using Eq. 1 and found that δ(T ′,M) ≈ 0 for our learned model M in all SDMA settings.

SDMAs for evaluation To test the efficacy of our approach, we created SDMAs for five different
settings including one task and motion planning agent and several SDMAs based on state-of-the-art
stochastic planning systems from the literature: Cafe Server Robot is a Fetch robot [Wise et al., 2016]
that uses the ATM-MDP task and motion planning system [Shah et al., 2020] to plan and act in a
restaurant environment to serve food, clear tables, etc.; Warehouse Robot is a robot that can stack,
unstack, and manage the boxes in a warehouse; a Driving Agent that can drive between locations
and can repair the vehicle at certain locations; a First Responder Robot that can assist in emergency
scenarios by driving to emergency spots, providing first-aid and water to victims, etc.; and an Elevator
Control Agent that can control the operation of multiple elevators in a building.

Additional details about each setting are available in the extended version [Verma et al., 2023].

6.1 Results

We present an analysis of our approach on all of the SDMAs listed above. We also present a
comparative analysis with the baseline on all SDMAs except the Cafe Server Robot, whose task and
motion planning system was not compatible with the baseline.

Cafe Server Robot This SDMA setup uses an 8 degrees of freedom Fetch [Wise et al., 2016] robot
in a cafe setting on OpenRave simulator [Diankov and Kuffner, 2008]. The low-level environment
state consists of continuous x, y, z, roll, pitch, and yaw values of all objects in the environment.
The predicate evaluators were provided by ATM-MDP of which we used only a subset to learn a
PPDDL model. Each robot capability is refined into motion controls at run-time depending on the
configuration of the objects in the environment. The results for variational distance between the
learned model and the ground truth model in Fig. 4 show that despite the different vocabulary, QACE
learns an accurate transition model for the SDMA.

We now discuss the comparative performance of QACE with the baseline across the four baseline-
compatible SDMAs presented above.
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Figure 5: A comparison of the approximate variational distance as a factor of the learning time
for the three methods: QACE (ours), GLIB-G, and GLIB-L (lower values better). × shows that the
learning process ended at that time instance for QACE. The results were calculated using 30 runs
per method per domain. Solid lines are averages across runs, and shaded portions show the standard
deviation. T ′ is the ground truth model. Detailed results are available in Verma et al. [2023].
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Figure 4: Variational Distance be-
tween the learned model and the
ground truth with increasing time
for QACE for Cafe Server Robot.
× shows that the learning process
ended at that time instance.

Faster convergence The time taken for QACE to learn the
final model is much lower than that of GLIB for three of the
four SDMAs. This is because trace collection by QACE is
more directed and hence ends up learning the correct model in
a shorter time. The only setup where GLIB marginally outper-
forms QACE is Warehouse Robot, and this happens because
this SDMA has just two capabilities, one of which is determin-
istic. Hence, GLIB can easily learn their configuration from
a few observed traces. For SDMAs with complex and much
larger number of capabilities – First Responder Robot and El-
evator Control Agent – GLIB finds it more challenging to learn
the model that is closer to the ground truth transition model.
Additionally, QACE takes much fewer samples to learn the
model than the baselines. In all settings, QACE is much more
sample efficient than the baselines as QACE needed at most
4% of the samples needed by GLIB-G to reach the variational
distance that it plateaued at. In contrast, GLIB-L started timing
out only after processing a few samples for complex SDMAs.

Few-shot generalization To ensure that learned models are
not overfitted, our test set contains problems with larger quantities of objects than those used during
training. As seen in Fig. 5, the baselines have higher variational distance from the ground truth model
for complex SDMA setups as compared to QACE . This shows better few-shot generalization of
QACE compared to the baselines.

7 Related Work

The problem of learning probabilistic relational agent models from a given set of observations has
been well studied [Pasula et al., 2007, Mourão et al., 2012, Martínez et al., 2016, Juba and Stern, 2022].
Jiménez et al. [2012] and Arora et al. [2018] present comprehensive reviews of such approaches. We
next discuss the closest related research directions.

Passive learning Several methods learn a probabilistic model of the agent and environment from
a given set of agent executions. Pasula et al. [2007] learn the models in the form of noisy deictic
rules (NDRs) where an action can correspond to multiple NDRs and also model noise. Mourão et al.
[2012] learn such operators using action classifiers to predict the effects of an action. Rodrigues
et al. [2011] learn non-deterministic models as a collection of rule sets and learn these rule sets
incrementally. They take a bound on the number of rules as input. Juba and Stern [2022] provide
a theoretical framework to learn safe probabilistic models with a range of probabilities for each
probabilistic effect while assuming that each effect is atomic and independent of others. A common
issue with such approaches is that they are susceptible to incorrect and sometimes inefficient model
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learning as they cannot control the input data used for learning or carry out interventions required for
accurate learning.

Sampling of transitions Several approaches learn operator descriptions by exploring the state
space in the restricted setting of deterministic models [Ng and Petrick, 2019, Jin et al., 2022]. A few
reinforcement learning approaches have been developed for learning the relational probabilistic action
model by exploring the state space using pre-determined criteria to generate better samples [Ng and
Petrick, 2019]. Konidaris et al. [2018] explore learning PPDDL models for planning, but they aim to
learn the high-level symbols needed to describe a set of input low-level options, and these symbols
are not interpretable. GLIB [Chitnis et al., 2021] also learns probabilistic relational models using goal
sampling as a heuristic for generating relevant data, whereas we use active querying using guided
forward search for this. Our empirical analysis shows that our approach of synthesising queries yield
greater sample efficiency and correctness profiles than the goal generation used in this approach.

Active learning Several active learning approaches learn automata representing a system’s
model [Angluin, 1988, Aarts et al., 2012, Pacharoen et al., 2013, Vaandrager, 2017]. These ap-
proaches assume access to a teacher (or an oracle) that can determine whether the learned automaton
is correct and provide a counterexample if it is incorrect. This is not possible in the black-box SDMA
settings that constitute the focus of this work.

8 Conclusion

In this work, we presented an approach for learning a probabilistic model of an agent using interactive
querying. We showed that the approach is few-shot generalizable to larger environments and learns a
sound and complete model faster than state-of-the-art approaches in a sample-efficient manner.

QACE describes the capabilities of the robot in terms of predicates that the user understands (this
includes novice users as well as more advanced users like engineers). Understanding the limits of
the capabilities of the robot can help with the safe usage of the robot, and allow better utilization of
the capabilities of the robot. Indirectly, this can reduce costs since the robot manufacturer need not
consider all possible environments that the robot may possibly operate in. The use of our system can
also be extended to formal verification of SDMAs.

QACE can also be used by standard explanation generators as they need an agent’s model. Such
models are hard to obtain (as we also illustrate in this paper) and our approach can be used to compile
them when they are not available to start with.

Limitations and Future Work In this work, we assume that the agent can be connected to a
simulator to answer the queries. In some real-world settings, this assumption may be limiting as users
might not have direct access to such a simulator. Formalizing the conditions under which is it safe to
ask the queries directly to the agent in the real-world is a promising direction for the future work.
Additionally, in this work, we assume the availability of the instruction set of the SDMA as input in
the form of capability names. In certain settings, it might be useful to discover the capabilities of an
evolving SDMA using methods proposed by Nayyar et al. [2022] and Verma et al. [2022].
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