
Improving Services using Mobile Agents-based IoT
in a Smart City

Pulkit Verma, Mayank Gupta, Tuhin Bhattacharya, and Pradip K. Das
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati, India

{v.pulkit, mayank.2013, b.tuhin, pkdas}@iitg.ernet.in

Abstract— Modern-day devices like smart-phones, tablets,
televisions etc. possess very powerful processors and huge
storage capacities compared to what were available a few years
ago. Most of these devices are also connected to the Internet.
However, the full capabilities of these devices are not fully
harnessed and thus, they are not as intelligent as they could
be. These devices, together with the Internet, can be used as
“Internet of Things” where each device can be both producer
and consumer of information. This framework is realizable in a
real dynamic system if there is an intelligent distributed layer
above it which can cater to services of all heterogeneous devices
as required.

The existing solutions to this problem are either too hardware
dependent, or too abstract. In this paper we present a concept
of this layer using mobile agents which makes the system
flexible and dynamically adaptable. This layer has been deployed
using a publicly available Prolog-based mobile agent emulator
(however, any other mobile agent framework can also be used).
The proposed approach is capable of updating information like
availability and usability of services dynamically. It also has
speech processing modules to provide solutions using voice-based
commands and prompts. The prototype is scalable and robust
to partial network failures. The implementation details and
performance analysis of this work are reported and discussed.
This framework can be used to deploy systems which can
enable people to search for services like health facilities, food
services, transportation, law and order using a common interface
including voice commands.

Keywords—Mobile Agents, Distributed System, Services, Smart
City, IoT.

I. INTRODUCTION

Nowadays there are numerous kinds of smart devices avail-
able to the common man, each of which has computing powers
which were not imaginable a decade ago. But the infrastructure
and network on which these devices run and communicate with
each other have not evolved at an equal pace. To overcome
this gap, the idea of devices interacting with each other was
introduced some time back.

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
DOI: https://doi.org/10.1109/IC3I.2014.7019766

The main challenge in such an arrangement is to develop
a framework that makes the system scalable, robust and fault
tolerant. Any new device should be seamlessly addable to the
existing network. Even if a part of the network becomes dead,
the remaining live nodes will continue to work. New services
can be added by simply adding another service type.

In this proposed framework various kinds of heterogeneous
devices could interact with each other on a network to provide
the services to the user. These services may include day-
to-day tasks like controlling home appliances remotely and
intelligently or navigating around a new city or some other
advanced usage.

In this paper we present such a framework that uses mobile
agents. We also demonstrate the practicality of the whole con-
cept by implementing a system based on this framework. The
mobile agents run on a platform that is totally distributed and
fault tolerant, so as to make the overall system more robust.
The characteristics of decentralization and load distribution are
also included in the system.

The proposed framework also includes execution of services
using voice commands and voice prompts. This framework
finds major applications in a smart city scenario where people
new to the city can use services without taking help from
others. This system is shown to be scalable and robust, and
can cater to a large population size.

II. RELATED WORK

Originally the concept of smart devices interacting with
each other to form a large network was introduced by Mark
Weiser [13] in 1991 as a possible peek into the future. Since
then many scientists around the world have been trying to put
forward a model to be used for realization of this concept.

There are two main design paradigms used in Internet of
Things. One of those focuses on “Internet” part of IoT, and
the other which focuses on the “Things” part. Approaches
focusing on “Internet” are the ones where new protocols are
being developed for catering the needs of IoT. Authentication
and security were also discussed as possible challenges in
using this approach.

Later a well-known standard Universal Plug and Play
(UPnP) for global devices interaction was introduced. It was
a “middleware platform for distributed semantic services”.

In Proceedings of the International Conference on Contemporary Computing and Informatics (IC3I 2014) 
Mysore, KA, India

https://doi.org/10.1109/IC3I.2014.7019766


Sensors and actuators were also tried to be integrated into
UPnP, but it suffered a major security problem as it did not
have any authentication method [6].

“UPnP sensor network management architecture” was pro-
posed which used Bridge of Sensors (BOSS) for handling
non-UPnP sensor nodes. But UPnP uses a large number of
protocols and hence is not suitable for use with embedded
devices [12].

The authentication problem of UPnP was addressed by
Devices Profile for Web Services (DPWS), but since the
protocols used are similar to that of UPnP, it also cannot be
used with small devices. Also interoperability problems will
be caused by the device discovery mechanism of DPWS [15].

As far as the “Things” part is concerned, IOT came into
reality with Radio-Frequency Identification (RFID) tags.

Most of the work related to realization of IoT is done in
the field of embedded systems where each smart device has
inherent networking capabilities and various such devices are
connected to a circuit which can then interact with other such
circuits over the Internet. Technologies like RFID and Near
Field Communication (NFC) have become integral part of such
implementations where the automatic identification of devices
and their interconnection is achieved using these [1], [10].

By using Near Field Communications (NFC) and Wireless
Sensor and Actuator Networks (WSAN) together with RFID
tags, “things” can also perform tasks. Embedding electronics
e.g., sensors into everyday physical things makes them “in-
telligent” and they can be made capable of executing tasks
autonomously [1].

Now in the current trend of “Smart City” initiative [11] these
“intelligent” things can play a big role. Neirotti et al. [11] gave
a general outlook into this concept of smart cities and provided
guidelines for policy makers and city managers to define the
Smart City strategy. They also showed the various recent work
done in fields like energy, environment, healthcare, public
security, etc. to be incorporated into these smart cities.

Most of the recent work is now based on the use of
Wireless Sensor Networks (WSN) which consists of several
autonomous independent sensors which monitor the envi-
ronment to collect data and send it to some designated
place/repository. The use of WSAN [3] to realize IoT was also
explored, wherein the requirements of embedded applications
on industrial level were also considered.

Recently researchers have tried to explore the use of mobile
agents in IoT as mobile agents provide flexibility and decen-
tralization to the system. Also they reduce the latency of the
network and the network load.

Mobile agents were initially used to integrate WSN and IoT
and were found to distribute load properly, exploit the “locality
in communication and system resources” and facilitate “agent-
based adaptable service composition” [8].

A mobile agent framework for IoT was also proposed to
help heterogeneous devices in completing the tasks cooper-
atively [4]. It used “Pheromone-Conscientious based mobile
agent migration mechanism” (PherCon) proposed by Godfrey
and Nair [5] as it provided partial bi-directional search.

Mobile agents based on web technologies were also pro-
posed which used HTML5 applications as agents to collect
data from different locations [7]. This particular implementa-
tion lacked autonomous and automatic movement of agents
and thus could be improved.

III. METHODOLOGY

We have implemented a prototype that uses the devices
connected to the Internet and are present in a city, to pro-
vide the basic backbone services, i.e., police, hospitals &
ambulances, transport services, and fire brigades. The police
stations, hospitals, transport services, and fire stations are the
service providing nodes. The other nodes are the citizens that
use their smart phones or tablets that have client applications
installed that can communicate with the service providers.

The client application sends a request, which contains a
request-type along with other details like the GPS location, an
image (of the building in case of a fire emergency) and the
details of the user and the device. The request type can be any
one of ‘Medical’, ‘Police’, ‘Transport’, or ‘Fire’.

The client knows the addresses of all the service providers
present in the city (the app can download these addresses
over the Internet initially). This information cannot be stored
offline as some of the data is dynamic, e.g., the availability of
ambulances, etc.

The client’s request goes to one of the service providers,
irrespective of the request type. The service provider is chosen
randomly, so as to efficiently balance the load of handling
the requests [2]. Also due to this, the system continues to
work irrespective of the number of service providers that
are alive. On receiving such a request, the service provider
acknowledges the client. If the client does not receive an
acknowledgement within a certain time frame, it resends
the request (by again selecting a random service provider).
Thus, eventually, the client will find a service provider that
acknowledges its request.

On receiving a request, the service provider checks the type
of the request and forwards the request to the appropriate
service provider. Each service provider, independent of its
type, maintains a list of all the other service providers, in-
cluding details like its GPS location, number of resources (like
ambulances, fire brigades, police force) available. Considering
the fact that the total number and addresses of these nodes are
fixed, so this particular operation is not very costly, and any
simple update procedure can suffice. On receiving a request,
it matches this request against all the servers of that type
available, and selects the most appropriate one depending on
distance and resources and forwards the request. An acknowl-
edgement is also sent to the client.

The service providers need to be able to distinguish between
a request sent by a client and that forwarded by another
service provider. In the first case, they need to find the most
appropriate provider and forward the request; while in the
second case, they just need to serve the request. Thus, for each
service, two requests are generated: Type1 and Type2. Type
2 request may be a local request, indicating that the Type 1



request landed on the correct service provider. Thus, there
are two acknowledgements for each service request: Ack1
informing the client that its request has been received and
Ack2 telling that a response has been initiated.

A. Architecture

The proposed system works above the TCP layer. The
requests and responses can be sent as payloads to the TCP
data. Each device is uniquely identified by its IP address. The
system uses mobile agents for communication.

Typhon: We have used Typhon mobile agent emulator to
develop the prototype. It works over the TCP layer and is
used to transfer messages and payloads between nodes. It is
totally distributed and has been tested for robustness [9].

Fig. 1. A typical request for a service with acknowledgement

As shown in Fig. 1, each service provider maintains a table,
which contains all the relevant information about all other
service providers: Their IP addresses, number of ambulances
& doctors, fire brigades, police force available and so on.
These details help it to find the most appropriate node that
can serve the incoming Type 1 request. When the request
is forwarded as a Type 2 request and the destined service
provider starts to serve the request, some of the resources may
need to be updated in all the tables. Thus, a mobile agent is
released with the new, updated values to all the other service
providers. These, on receiving the agent, update the values in
their local tables.
1) Addition of a new node: Whenever a new client node
wants to start using the service, it installs the client application
on his smartphone, and the URLs/ IP addresses of all the
service providers in the city are configured on the client. Now,
whenever the user wants to request, he/ she opens the client,
and sends the appropriate (Type 1) request.

On the other hand, if a new service provider (a new police
station, hospital, file station, transportation or other services
like food, gas stations, etc.), joins the network, all service
provider tables need to be updated with its address and other
details and the clients need to be notified about a new service
provider being available.

2) How is it useful?: The system is totally decentralized.
Experiments show that it works well and is robust against
network failures and congestion. Even if a part of the network
fails, the remaining nodes can still work without any glitches.
Also, other services can be added without any change in the
architecture. The system can be made totally hands-free using
voice commands and prompts.

B. Speech Processing Module

Though a text-based input is sufficient, the user may not
always be in a position to operate the device using his hands.
For example, while driving, for differently abled people, etc.
So, it is easier to have a speech control subsystem in place
that can operate via voice commands.

C. Sending Additional Information

A simple text message may not always be sufficient for
the service providers to act upon in the right manner. Some
additional information may be needed as well. For example,
if there is a fire somewhere, a cell phone camera photo of the
location of the fire may be very crucial. Also, in case of an
injury, a wav recording or an image/photo may serve well.

However, a multimedia message consisting of a wav file or
an image may be quite large in size. Also, it may need to
be compressed. Thus, it may take more time compared to a
simple text message. So it is not feasible to send them as a
single message.

The text message should go first, followed by the multime-
dia message which is sent as a payload. Also, since different
requests may be sent to different service providers as Type
2 requests, we need to inform the server that a particular
image or sound clip belongs to a previously routed Type 1
request, and must be sent to the same destination. A key
must be maintained for this purpose. Whenever a Type 2
request is sent by one service provider to the other, it keeps
an entry of the key-service provider for some time. When the
multimedia message arrives with that key, it is looked up for
in the table and sent to the same service provider. This key can
be a combination of the client id, GPS location and request
timestamp.

IV. EXPERIMENTAL SETUP

For our experiment, we have used LPA Prolog and Typhon-
A Mobile Agents Framework for Real World Emulation in
Prolog [9].

As initial setup, there are several instances of Prolog run-
ning, denoting Hospital, Police Station, Cab Services (trans-
portation), and Fire Brigade. These all are service providers.

When the client requests for any of the services, the type
of service provider and the location of the client, i.e., the GPS
coordinates are embedded as the payload of a mobile agent and
sent to any of the service providers chosen at random. Now
every service provider has the list of all the service providers
available in the city. Based on the request type and location
of the client, the service provider that got the request sends
the mobile agent to the appropriate service provider. When



the mobile agent moves to that service provider, it takes the
necessary action and a mobile agent is sent back to the client
as an acknowledgement.

The Typhon emulator that we have used is designed to work
only over a local area network. However, to deploy the same
system over the Internet, any mobile agent framework which
supports Internet-level packet routing can be used.

We maintain a number of nodes, each of them being a
Prolog prompt, running on different IP address and port
combinations. Each of these supports Typhon framework, and
can be used to send and receive mobile agents.

Some of these prompts act as clients and the others as
service providers. The clients send Type 1 requests to the
service providers using their IP addresses and port numbers
and get the acknowledgement.

A service provider, on accepting a Type 1 request, finds
the correct service provider and raises a Type 2 request. The
appropriate messages are displayed on the screen. Whenever a
message is sent or received, the timestamp also gets displayed
(All system clocks are synchronized periodically). We study
the performance of the system as the number of nodes is
varied.

The response time for a service can be described as the total
time elapsed between the issuing of the request by the user
and the receiving of the acknowledgement for Type 2 request.

It is expected that the response time will increase not more
than linearly with the increase in the number of client nodes.
Also, it should decrease as the number of service provider
nodes is increased. We plot the graphs between these entities.

In this experiment, along with a text-based input, we have
also used a speech-based interface. This was developed us-
ing HTK, which is a standard toolkit for speech processing
tasks [14].

Since the speech subsystem is used only to collect the input
from the user, its accuracy does not influence the performance
of the proposed architecture; it just suggests how flexible the
system can be. This is helpful in a smart environment, when
the person is using his device to send a request.

V. RESULTS

We measure the performance of the system under various
loads and network traffic conditions.

Table 1 shows the variation in the service time with increase
in number of clients. The number of service providers was
equal to 10 and it was kept constant throughout the run. Fig. 2
shows the graphical analysis of the same data. It may be noted
that the service time increases as we increase the number of
clients. Also, the increase in the service time is approximately
linear.

Table 2 shows the different service times with different
number of service providers. In this experiment 60 clients
were used. Fig. 3 shows the graphical representation of the
results. The service time decreases when the number of service
providers is increased. This may be due to the fact that as
the service providers increase in number, the load tends be
distributed across more nodes. This trend is not visible in the

case of a single service provider. This may be because there
is no need to route the packets anywhere else. So, the Type
2 request is in effect a loopback request causing the service
time to decrease.

Hence the increase in service time as we increase the
number of clients is compensated by the decrease in service
time as we increase the number of service providers.

TABLE I
VARIATION IN SERVICE TIMES TAKEN FOR DIFFERENT NUMBER OF

CLIENTS USING 10 SERVICE PROVIDERS

No. of clients
Service Time (milliseconds)

Minimum Maximum Average
1 235 235 235

5 262 469 388.2

10 423 460 446.4

20 302 662 492.1

40 334 2089 716.5

60 437 2330 952.2

85 295 25699 1442.8

Fig. 2. Graph for number of clients vs. average service time

TABLE II
VARIATION IN SERVICE TIMES TAKEN FOR DIFFERENT NUMBER OF

SERVICE PROVIDERSUSING 60 CLIENTS

No. of Service
Providers

Service Time (milliseconds)
Minimum Maximum Average

1 517 1696 1008.6

5 516 2985 1332.2

10 585 3115 1389.9

15 577 1953 976.6

20 279 2076 1049.4

The experiments were performed using the local area net-
work of our institute. Thus, it may be argued that the results
will not be the same as in a real network or the Internet.
However, various real network properties, like traffic and
congestion were taken into consideration while conducting
the emulation. So, the results reported here should not vary
significantly with the real network.



Fig. 3. Graph for number of number of service providers vs. average service
time

Due to the unavailability of a standard procedure to bench-
mark different architectures in the domain, comparison be-
tween the proposed system and others is not straight forward.

VI. CONCLUSION

In this paper we proposed a framework for IoT which uses
mobile agents for information transfer which in turn provides
the services. The proposed method provides better service time
for requests and increases linearly with increase in number of
concurrent requests. Also, the number of service providers can
be increased or decreased dynamically with no need to modify
the existing network. Even in case of a failure of some part
of the network, the remaining services are not affected. New
services and new clients can be added seamlessly. The system
is totally distributed and decentralized.

It was implemented over the institute local area network
instead of on the Internet. Though the prototyping was done
on a small scale as compared to an actual city, the concept
seems to be very promising and scalable.

We used only four types of services, but it can be extended
to almost any type of services, e.g., gas stations, location of
ATM machines, restaurants, entertainment centers and so on.

Speech processing has been used effectively to provide
voice commands and voice prompts to give end user a hands
free solution. It helps people who cannot readily use the
conventional text based input methods because of disabilities
or scenarios such as driving.

To test the proposed concept, a prototype for a smart city
has been developed. However, it can be used in a number
of other domains as well, such as smart homes, healthcare,
university campuses, etc. The only requirement is availability
of a network and several smart devices.

The scenarios for updating the system like adding new
service providers or adding new services to the list of services
provided by a service provider can also be implemented with
the help of agents or a new protocol can be developed for
it. Since these events have low frequency hence they will not
have much effect on the performance of the system.

The speech processing module can be replaced with the
built-in speech processing APIs available in the devices. This
will allow users to connect to the system using the voice
interface that he/she is already familiar with.

VII. FUTURE WORK

The system can be extended for controlling devices re-
motely. The identification of devices in case of dynamic IP
addresses is a big challenge for a distributed system that
doesn’t use a unique device ID for each device.

If multiple requests are received from a location, they
may be for the same incident or different ones. This will
require further investigation based on the type of requests from
different sources.

Real-time services like traffic updates can also be imple-
mented using a slightly complex version of this design.

REFERENCES

[1] L. Atzori, A. Iera, G. Morabito, 2010. The Internet of Things:
A survey. Computer Networks. 54(15), 2787–2805.

[2] M. Bramson, Yi Lu, and B. Prabhakar, 2010. Randomized Load
Balancing with General Service Time Distributions. SIGMET-
RICS Perform. Eval. Rev. 38 (1), 275-286.

[3] D. De Guglielmo, G. Anastasi and A. Seghetti, 2014. From IEEE
802.15.4 to IEEE 802.15.4e: A Step Towards the Internet of
Things. Advances onto the Internet of Things. 135-152.

[4] W.W. Godfrey, S.S. Jha and S.B. Nair, On a Mobile Agent
Framework for an Internet of Things. Communication Systems
and Network Technologies (CSNT), 2013 International Confer-
ence on. 345-350.

[5] W.W. Godfrey and S.B. Nair, 2011. A Bio-inspired Technique
for Servicing Networked Robots. International Journal of Rapid
Manufacturing, Inderscience Enterprises Ltd. 4(2), 258-279.

[6] Y. Gsottberger, X. Shi, G. Stromberg, T. Sturm and W. Weber,
2004. Embedding Low-Cost Wireless Sensors into Universal
Plug and Play Environments. Wireless Sensor Networks. 291-
306.

[7] L. Jarvenpaa, M Lintinen, A.L. Mattila, T. Mikkonen, K. Systa
and J.P. Voutilainen, 2013. Mobile agents for the Internet of
Things. System Theory, Control and Computing (ICSTCC),
2013 17th International Conference. 763-767.

[8] T. Leppanen, Meirong Liu, E. Harjula, A. Ramalingam, J. Ylioja,
P. Narhi, J. Riekki and T. Ojala, 2013. Mobile Agents for
Integration of Internet of Things and Wireless Sensor Networks.
Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on. 14-21, 2013.

[9] J. Matani and S.B. Nair, 2011. Typhon – A Mobile Agents
Framework for Real World Emulation in Prolog. Multi-
disciplinary Trends in Artificial Intelligence. 7080, 261-273.

[10] F. Michahelles, F. Thiesse, A. Schmidt, J. R. Williams, 2007.
Pervasive RFID and near field communication technology. IEEE
Pervasive Computing 6(3), 94–96 (2007).

[11] P. Neirotti, A. D. Marco, A. C. Cagliano, G. Mangano, and F.
Scorrano, 2014. Current trends in Smart City initiatives: Some
stylised facts. Cities. 38(0), 25-36.

[12] H. Song, D. Kim, K. Lee and J. Sung, 2005. UPnP Based
Sensor Network Management Architecture. Proc. International
Conference on Mobile Computing and Ubiquitous Networking.

[13] M. Weiser, 1991. The Computer for the 21st Century. Scientific
American. 265(9): 66–75.

[14] S. Young, J. Jansen, J. Odell, D. Ollason and P. Woodland, The
HTK Book. Cambridge Univ., 1996.

[15] E. Zeeb, A. Bobek, H. Bohn and F. Golatowski, 2007. Lessons
learned from implementing the Devices Profile for Web Ser-
vices. Proceedings of the 2007 Inaugural IEEE International
Conference on Digital Ecosystems and Technologies (IEEE
DEST 2007). 229–232.


	Introduction
	Related Work
	Methodology
	Architecture
	Addition of a new node
	How is it useful?

	Speech Processing Module
	Sending Additional Information

	Experimental Setup
	Results
	Conclusion
	Future Work
	References



