
1

A Comparative Study of Resource Usage for
Speaker Recognition Techniques

Pulkit Verma and Pradip K. Das
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati, Assam, India

Abstract—Resource usage of a software is an important factor
to be taken into consideration while developing speaker recogni-
tion applications for mobile devices. Sometimes usage parameters
are considered as important as accuracy of such systems. In
this work, we propose an analysis of resource utilization in
terms of power consumption, memory and space requirements of
three standard speaker recognition techniques, viz. GMM-UBM
framework, Joint Factor Analysis and i-vectors. Experiments
are performed on the MIT MDSVC corpus using the Energy
Measurement Library (EML). It is found that though i-vector
approach requires more storage space, it is superior to the other
two approaches in terms of memory and power consumption,
which are critical factors for evaluating software performance in
resource constrained mobile devices.

Index Terms—GMM, UBM, JFA, i-vectors, speaker recogni-
tion, resource usage, power consumption.

I. INTRODUCTION

Resource usage in speaker verification systems is a major
bottleneck in providing real time performance of such systems.
It becomes increasingly important in the current scenario
where the speeds of devices have been increasing at a higher
rate than ever before and smaller devices are replacing the
large static systems. Optimal utilization of resources becomes
an important factor in the success of any technique in such
environments. Despite the advances in speech processing and
recognition technology, resource usage remains a major bot-
tleneck in providing real time experience to the users.

Gaussian Mixture Model (GMM) based speaker verification
approach was proposed by Reynolds [1] long time back. It
remained popular in the form of the GMM-UBM framework.
It was modified so as to take into account the inter-speaker
(speaker) variability and intra-speaker (channel) variability in
the modeling process. This approach was termed as Joint
Factor Analysis (JFA) [2], [3].

JFA considers that these variabilities are independent of
each other. But it was later found that channel variabilities
were also modeling the inter-speaker variations [4]. Dehak
et. al. [5] resolved this issue by proposing a channel-blind
approach where speaker and channel variabilities are modeled

c©2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: https://doi.org/10.1109/ICSPCom.2016.7980598

together in a lower dimensional total variability space. The
vectors represented in this space are called i-vectors. This has
now become the state of the art approach in nearly all speech
processing applications [6] because of its low complexity and
better performance.

In these days of energy aware devices, the efficacy of a
software based on its power requirements has gained sig-
nificance. So power consumption has become an important
dimension of software performance and quality measurement.
Calculating the power consumption of a software was first
proposed for embedded software [7]. Making such systems
useful for application software is challenging and many meth-
ods have been developed but few of them are actually used in
practice. A review of energy consumption of software libraries
is presented in [8] and [9]. PowerAPI [10] and Energy
Measurement Library (EML) [11] are some of the tools which
contain successful implementations to solving this problem.

SpeakerSense [12] was the first major approach in calcu-
lating energy efficiency for a continuous background sensing
speaker identification prototype. The work presented a detailed
analysis for variation in energy efficiency and accuracy vs
length of smoothing windows. A major drawback of this
approach is that it is tested on a very small dataset of 17
speakers and implements on GMM-UBM framework.

In this paper, we present a comparative study of power,
memory and storage space consumption of GMM-UBM
framework, JFA and i-vector approach in the domain of
speaker recognition.

The rest of the paper is organized in the following manner:
in Section 2, the three speaker recognition techniques are
explained; in Section 3, approaches used for resource usage
analysis are described; in Section 4, the experimental setup is
explained; in Section 5, the results are presented and discussed;
and in Section 6, conclusions and future work are discussed.

II. SPEAKER RECOGNITION APPROACHES

The general framework of any speech recognition approach
can be explained using a speaker verification system as shown
in Figure 1. This generic approach can be subdivided into two
main steps, speaker enrollment and speaker verification.

During the speaker enrollment process, a background model
is generated using the data collected from non-target utter-
ances. In this paper, for all the approaches this model will be
Universal Background Model (UBM). Using this background

In Proceedings of the International Conference on Signal Processing and Communication (ICSC 2016)
Noida, UP, India

2

Feature

Extraction

Training

Algorithm

Background

Model

Target Model
Feature

Extraction

Model

Adaptation

Feature

Extraction

Pattern

Matching

Decision

Non-target

Target

Test

Other Model(s)

Offline Process

Online Process

Pattern

Matching

Score

Normalization

Decision

Logic

Fig. 1: Flowchart for a generic Speaker Recognition Process

model, a target model is generated using the target utterances
by adapting the background model according to the target
data. Now this target model will act as the single point of
reference for the pattern recognition algorithms. Whenever any
test utterance is given as input to the system, features are
extracted from it and pattern matching algorithms are applied
on it using one or more kinds of target models. The resultant
similarity score is then normalized and final decision is taken
after applying some decision logic to this normalized score.

A. GMM-UBM Framework
In this method GMMs are created for each targeted speaker

by training a feature specific model on each speaker. Es-
timation Maximization (EM) algorithm is used to train the
Universal Background Model (UBM). This UBM is changed
using speaker specific data by applying the MAP algorithm
to generate the speaker specific GMMs. A particular test
utterance is compared against these models and UBM to
complete the recognition process.

A major drawback in this method is that the MAP algorithm
may adapt to the channel and other environmental factors. Also
if the training data is limited, the speaker models may fail to
capture all the speaker characteristics.

B. Joint Factor Analysis
In JFA [2], [3], [13], we assume that for a particular

speaker the speaker and channel dependent supervector µ used
to represent any speech utterance is generated by the vector
sum of speaker dependent supervector and channel dependent
supervector. Also these speaker and channel supervectors are
distributed normally and are statistically independent. If s
is speaker dependent supervector, c in channel dependent
supervector, then

µ = s + c (1)

We assume that the distribution of s and c has a hidden vari-
able description as depicted by Equations 2 and 3 respectively,
given by:

s = m + Vy + Dz (2)

where, s is speaker dependent supervector, m is a speaker and
channel independent supervector (from UBM), V is eigenvoice
matrix (rectangular matrix of low rank), D is a residual
diagonal matrix, y is a vector representing speaker factors, z
is a normally distributed random vector representing speaker
specific residual factors.

c = Ux (3)

where, c is channel dependent supervector, U is eigenchannel
matrix (matrix of low rank), x is a normally distributed random
vector representing channel factors. Hence it can be inferred
that c is normally distributed vector whose mean is 0.

C. i-vectors

Dehak [4] observed that the channel dependent supervector
in JFA also models the speaker features. He introduced a new
low dimensional total variability space T to account for both
the variabilities, where µ is given by:

µ = m + Tx (4)

where, m is the UBM supervector, x is a normally distributed
random vector in this space. The factors of x also called as
total factors and are generally known as identity vectors or
i-vectors.

One of the additional advantage of this approach is that
supervised training is not needed in this model unlike JFA
and GMM-UBM.

3

D. Comparison

The three methods compared in this paper differ in imple-
mentation of various steps shown in Figure 1. Though the basic
flow remains same, many options are available to implement
each parameter of the generic method. Table I shows the
theoretical comparison of the implementation of three methods
used in this paper.

III. RESOURCE USAGE ANALYSIS

A. Power Consumption

We have used Energy Measurement Library (EML) [11] to
measure the power requirements of the various approaches.
It acts as a middleware between code for measuring power
consumption and hardware based measurement tools. EML
uses Performance API (PAPI) [14] to get the power readings
via RAPL register interfaces. Single multi-core Intel R© Xeon R©

CPU was used for the experiments. EML also provides ab-
stracted interface to simplify data collection and representa-
tion. It is currently available for a limited number of hardware
platforms.

B. Memory and Space Consumption

For the memory requirements of the applications, we have
calculated the resident set size (RSS) portion of the memory
as it is the actual amount of memory that is occupied by
the process in main memory. We have used the pmap utility
available in UNIX R© based operating systems for this purpose.

For the space requirements we have calculated the amount
of space occupied by the executables on the secondary disk.
ls command was used for this purpose.

IV. EXPERIMENTAL SETUP

A. Corpus

We have used the MIT Mobile Device Speaker Verification
Corpus (MDSVC) [15], aimed at supporting speaker verifica-
tion research using mobile devices, in this work. Recordings
were done using microphones and internal headsets in different
environments to generate multi-style trained models. Since the
data was collected over 2 sessions it also contains inter-session
variability as well.

The corpus has an enrolled data of 48 speakers out of whom
26 were male and 22 were female. A total of 54 recordings
per person were done in each session. Hence over 2 sessions,
5,184 recordings were collected for enrolled users. Imposter
data was also recorded which consisted of 40 speakers, out of
which 23 were male and 17 female.

The text used consisted of names and ice cream flavor
phrases. The average length of each recording is about 2
seconds.

B. Scoring Techniques

Zero-dependent test-score normalization (ZT-norm) [16] has
been used in GMM-UBM and JFA approach. In this technique
the T-norm of each test utterance is calculated against each im-
poster model. These scores are further normalized by applying

Z-norm to get the output of ZT-norm. Here it should be noted
that Z-norm is calculated by scoring each target speaker model
with each imposter utterance.

Probabilistic Linear Discriminant Analysis (PLDA) [17] has
been used for similarity scoring in the i-vector approach. Given
two i-vectors x1 and x2, the PLDA score measures the log-
likelihood ratio between the two hypotheses {H0,H1}, where
H0 hypotheses that x1 and x2 belong to the same speaker while
H1 hypotheses otherwise. The score is given as:

scorePLDA = log(p(x1, x2 |H0)) − log(p(x1, x2 |H1)) (5)

This can be explained by the fact that if the i-vectors belong
to the same speaker then their latent variables will be same,
otherwise they will be different. The solution to (5) can be
found in [17]. For normalization we have used standard Length
Normalization prior to applying PLDA.

C. Tools and Libraries

For the calculation of power consumption Energy Measure-
ment Library (EML) [11] is used. For the speaker recognition
techniques, program development was based on ALIZE [18]
toolkit. This was to ensure that standard code-base is used for
the experiments.

D. Platform

The output of power requirements vary across systems
and might change significantly if the measurement platform
is altered. But the relative power requirements of different
processes generally does not change.

The system used for the experiments has the following
specifications:

• 1 x Intel R© Xeon R© CPU E5530 @
2.40GHz

• 16 Cores
• 48 MB L3 Cache
• 32 GB RAM
• gcc 4.1.2
• Intel R© MSR RAPL interface
• Intel R© MPSS 3.4.2

E. Configuration

First 19 Mel frequency cepstral coefficients have been
extracted along with log energy feature. 25 ms Hamming
window was used along with a frame advance of 10 ms for this
purpose. Using windows of 5 frame, delta and double-delta
coefficients were calculated to give a total of 60 dimensional
features.

One gender-independent UBM was trained with 32 Gaus-
sian components from a training set consisting of randomly
selected recordings from MIT MDSVC corpus. This UBM is
used for the extraction of zero and first order Baum-Welch
statistics. Speaker and channel variability subspaces of 32 and
16 dimensions respectively are used for JFA experiments. For
the i-vector approach 48 dimensional total variability space is
used, along with 32 dimensional speaker subspace being used
for PLDA.

4

TABLE I: Different Parameters used in the experiments for the three approaches

Parameter GMM-UBM JFA i-vector

Feature Extraction MFCC MFCC MFCC
Training Algorithm EM EM + JFA Hyperparameter EM + TVA training
Background Model UBM UBM + JFA Parameters UBM + TV Parameters
Model Adaptation BW + MAP BW + JFA Adaptation BW + FA training
Pattern Matching BW BW BW + Factor extraction

Score Normalization Log likelihood Log likelihood Cosine Distance

While evaluating each system’s performance, the time taken
for a method comprises of the total time involved, from
the feature extraction step to the execution of final decision
logic for the test sets. Any precomputation of i-vectors is not
done, so as to simulate the real conditions in which speaker
recognition application will be used.

The accuracies are calculated as the percentage of speakers
the method is able to identify accurately out of 48 speakers
on whose utterances the experiments were performed. The in-
accuracies are reported when the confidence values generated
after the scoring step are within 2% of each other for multiple
speakers. Hence in such a case the method cannot tell the test
utterance is associated with which recording with sufficient
confidence.

V. RESULTS

We compared the memory requirements of GMM-UBM
approach, JFA approach, and i-vector technique using the pmp
command1. The time interval at which the readings were taken
is 50 milliseconds. The graph in Figure 2a shows the variation
of memory usage with time. It can be clearly seen that the
i-vector approach is much faster as compared to the JFA
and GMM-UBM approach. Also the memory requirements
are relatively lesser than the other two. The maximum and
average memory used during the experiment is also reported
in Table II.

Table II also shows the power consumption of the three ap-
proaches. Though i-vector approach seems to perform slightly
better than the other two approaches, it can be seen that all of
them perform nearly equally in this respect. The unit of power
consumption is same as mentioned in [11].

It should be noted that EML gives better results on paral-
lelizable programs. JFA and GMM-UBM approaches imple-
mented in the experiments do not have any preprocessing to be
done, whereas in the i-vector approach normalization was done
prior to actual scoring. Hence the results for i-vector approach
might be improved if power consumption calculation is done
without any parallelization.

The space requirements of the approaches keep increasing
as we move from GMM-UBM to i-vector owing to the large
code size and complexity for i-vector calculation leading to
larger executables.

On the basis of these experiments we observed that the i-
vector approach performs significantly better in terms of speed.
The power consumption of all 3 approaches is comparable
with i-vector approach performing slightly better. The i-vector

1The results are based on [19]

technique also exhibit slight optimality in terms of memory
consumption but due to its large code-base it uses the maxi-
mum space to the order of thrice the space used by the other
2 methods.

VI. CONCLUSION

In this paper, a comparison of the current state of the
art techniques in terms of their resource utilization targeted
towards speaker recognition is conducted. Experiments were
performed on a standard corpus collected using mobile devices
in a noisy environment. This dataset emulates the data likely to
be encountered in real life environments. The algorithm tested
using this dataset reflects the true nature of performance in
actual situations.

The results show that the i-vector approach is more efficient
in terms of memory usage and power consumption, which are
the major focus areas for today’s computing environments.
Specifically in case of mobile applications, these two factors
can play an important role in the success and usability of such
software. Even in terms of running time the i-vector approach
outperforms the other two approaches.

The current work only analyzes the resource usage on
laptops and desktops in the lab environment. This will be
extended to mobile devices in future to get more specific
readings for various mobile platforms. Work is underway to
port the currently developed C++ code to Android platform.

Future enhancements to this work include incorporating
these experiments on heterogeneous operating systems like
Android

TM
, Windows R© Phone, etc. as well as experimenting

with different sized feature vectors for all these speaker
recognition approaches.

ACKNOWLEDGMENT

The authors would like to thank MIT Computer Science and
Artificial Intelligence Laboratory for providing MIT MDSVC
Corpus and also appreciate the support of UNESCO and
Government of India for providing funds for the project, which
helped greatly in the work reported herein.

REFERENCES

[1] D. A. Reynolds, “Speaker identification and verification using gaussian
mixture speaker models,” Speech Communication, vol. 17, no. 1-2, pp.
91–108, 1995.

[2] P. Kenny, “Joint factor analysis of speaker and session variability: Theory
and algorithms,” Tech. Rep., 2005.

[3] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint Factor
Analysis Versus Eigenchannels in Speaker Recognition,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 15, no. 4, pp.
1435–1447, May 2007.

5

TABLE II: Resource consumption for GMM-UBM, JFA and i-vector approaches for speaker recognition

Approach Memory Consumption (MB) Energy Space Time Accuracy

Average Maximum (W.h) (KB) (sec) (%)

GMM-UBM 1291.5 1310.0 0.3648 1013 8.65 89.58
JFA 1292.0 1488.0 0.3641 1034 6.45 93.75

i-vectors 1106.0 1284.0 0.3472 3369 2.95 97.91

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1 2 3 4 5 6 7 8 9

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Time (sec)

GMM-UBM
JFA

i-vector

(a) Memory Consumption

GMM-UBM JFA i-vectors

0

1

2

3

Energy (in W.h) Secondary Space (in MB) Accuracy (in %)

(b) Energy and Space Requirements

Fig. 2: Resource consumption for GMM-UBM, JFA, and i-vector approaches for speaker recognition

6

[4] N. Dehak, “Discriminative and Generative Approaches for Long- and
Short-term Speaker Characteristics Modeling: Application to Speaker
Verification,” Ph.D. dissertation, 2009, aAINR50490.

[5] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-End
Factor Analysis for Speaker Verification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 4, pp. 788–798, May
2011.

[6] P. Verma and P. K. Das, “i-Vectors in Speech Processing Applications:
A Survey,” International Journal of Speech Technology, vol. 18,
no. 4, pp. 529–546, 2015. [Online]. Available: http://dx.doi.org/10.
1007/s10772-015-9295-3

[7] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2, no. 4,
pp. 437–445, Dec 1994.

[8] A. Noureddine, R. Rouvoy, and L. Seinturier, “A Review of Energy
Measurement Approaches,” SIGOPS Oper. Syst. Rev., vol. 47, no. 3,
pp. 42–49, Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2553070.2553077

[9] A. Noureddine, R. Rouvoy, and L. Seinturier, “Unit Testing of Energy
Consumption of Software Libraries,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, ser. SAC ’14. New
York, NY, USA: ACM, 2014, pp. 1200–1205. [Online]. Available:
http://doi.acm.org/10.1145/2554850.2554932

[10] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier, “PowerAPI:
A Software Library to Monitor the Energy Consumed at the Process-
Level,” ERCIM News, vol. 92, pp. 43–44, Jan. 2013.

[11] A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, “Measuring energy
consumption using EML (energy measurement library),” Computer
Science - Research and Development, pp. 1–9, 2014.

[12] H. Lu, A. Bernheim Brush, B. Priyantha, A. Karlson, and J. Liu,
“SpeakerSense: Energy Efficient Unobtrusive Speaker Identification on
Mobile Phones,” in Pervasive Computing, ser. Lecture Notes in Com-

puter Science, K. Lyons, J. Hightower, and E. Huang, Eds. Springer
Berlin Heidelberg, 2011, vol. 6696, pp. 188–205.

[13] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study
of interspeaker variability in speaker verification,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 16, no. 5, pp. 980–
988, July 2008.

[14] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci,
“A portable programming interface for performance evaluation
on modern processors,” Int. J. High Perform. Comput. Appl.,
vol. 14, no. 3, pp. 189–204, Aug. 2000. [Online]. Available:
http://dx.doi.org/10.1177/109434200001400303

[15] R. Woo, A. Park, and T. Hazen, “The MIT Mobile Device Speaker
Verification Corpus: Data Collection and Preliminary Experiments,” in
Speaker and Language Recognition Workshop, 2006. IEEE Odyssey
2006: The, June 2006, pp. 1–6.

[16] R. Zheng, S. Zhang, and B. Xu, “A comparative study of feature and
score normalization for speaker verification,” in Advances in Biometrics,
ser. Lecture Notes in Computer Science, D. Zhang and A. Jain, Eds.
Springer Berlin Heidelberg, 2005, vol. 3832, pp. 531–538.

[17] Y. Jiang, K. Lee, Z. Tang, B. Ma, A. Larcher, and H. Li, “PLDA
modeling in i-vector and supervector space for speaker verification,”
in INTERSPEECH 2012, 13th Annual Conference of the International
Speech Communication Association, Portland, Oregon, USA, September
9-13, 2012, 2012, pp. 1680–1683.

[18] A. Larcher, J. Bonastre, B. G. B. Fauve, K. Lee, C. Lévy, H. Li, J. S. D.
Mason, and J. Parfait, “ALIZE 3.0 - open source toolkit for state-
of-the-art speaker recognition,” in INTERSPEECH 2013, 14th Annual
Conference of the International Speech Communication Association,
Lyon, France, August 25-29, 2013, 2013, pp. 2768–2772.

[19] P. Verma, “Resource Usage Analysis for Speech Recognition Tech-
niques,” Master’s thesis, Department of Computer Science & Engineer-
ing, Indian Institute of Technology Guwahati, India, 2015.

