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How do we combine human expertise with machine speed 
and scale, especially when lives are on the line?



• Automated planners are powerful but require expert knowledge.

• Humans have intuition, but can't solve complex problems fast enough.

• LLMs are unreliable for critical decision-making.

The Research Gap
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What if we could have a system where domain experts could guide 
AI planning in natural language and trust that the results are valid?
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Can we make LLMs reliable planners 
AND

 use them to make planning accessible?



PDDL-Instruct: Enhancing 
Symbolic Planning Capabilities in LLMs through 

Logical Chain-of-Thought Instruction Tuning
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LLMs are good at Reasoning
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LLMs are bad at Planning



• What works for reasoning in LLMs?

• How to leverage it for planning?

Can we leverage LLMs’ reasoning capabilities for Planning?
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Planning Domain Definition Language (PDDL)
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(:action pickup

  :parameters (?ob)

  :precondition (and 
 (handempty)
 (ontable ?ob))

  :effect (and 
 (not (handempty))
 (not (ontable ?ob))
 (holding ?ob))
)

Precondition: This condition must be true for 
this action to execute

Effect: This is a set of conditions, one of which 
becomes true when this action is executed



• Finetuning

• Instruction tuning (finetuning with instructions)

• Chain-of-Thought prompting

What works for reasoning in LLMs?
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Finetuning
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Pre-trained

LLM
Fine-tuned

LLM

Domain File
Problem File

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩

Output Plan

Adapt a pre-trained general LLM to excel at a specific task (planning) by 
training on domain examples.

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File



Finetuning with Negative Examples
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Pre-trained

LLM
Fine-tuned

LLM

Domain File
Problem File

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩

Output Plan

Add some failing plans, label them as incorrect, and add them to the 
finetuning data.

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File 



Instruction Finetuning
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Pre-trained

LLM

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File +

Explanation

Fine-tuned

LLM

Domain File
Problem File

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩

Output Plan

Add Explanations: Instructions teach the model WHAT planning means, not just 
PATTERNS in data. Tell it to check preconditions, apply effects, and verify goals.



Augment finetuned LLM with Chain-of-Thought Prompting 
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Pre-trained

LLM

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File + 

Explanation Fine-

Tuning
Fine-tuned

LLM

⟨𝑠1, 𝑎2, 𝑠2⟩

Fine-tuned

LLM ⟨𝑠𝑛 1, 𝑎𝑛 , 𝑠𝑛⟩-

.

.

.

Domain File
Problem File

⟨𝑠0, 𝑎1, 𝑠1⟩

CoT Output

Dataset 𝔻2

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩Output Plan:

Making the model show intermediate reasoning steps for planning instead of 
jumping to the final answer.



PDDLInstruct
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⟨𝑠1, 𝑎2, 𝑠2⟩

Fine-tuned

LLM

Final

LLM

Pre-trained

LLM

Dataset 𝔻1: Set of
• Domain File
• Problem File
• Plan File + 

Explanation

⟨𝑠𝑛 1, 𝑎𝑛 , 𝑠𝑛⟩-

.

.

.

Domain File
Problem File

Verifier
[VAL]

⟨𝑠0, 𝑎1, 𝑠1⟩

.

.

.

⟨𝑠1, 𝑎2, 𝑠2⟩

⟨𝑠𝑛 1, 𝑎𝑛 , 𝑠𝑛⟩-

.

.

.

⟨𝑠0, 𝑎1, 𝑠1⟩

Domain File
Problem File

Instruction Tuning based on VAL Feedback

CoT Output

Dataset 𝔻2
Dataset 𝔻test

⟨𝑎1, 𝑎2, … , 𝑎𝑛⟩Output Plan:

Reason

Reason

Reason

Fine-

Tuning
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Reasoning Chain Optimization
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θ𝑡
𝑟 = 𝜃𝑡 − 𝛿1 ∇𝜃𝑡 L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 (𝜃𝑡 ,𝔻𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔

𝑡 )

loss function that measures the quality

of the generated reasoning chains

{ 𝑠𝑖−1, 𝑎𝑖 , 𝑠𝑖 , 𝑓𝑖 ∶ ∀ steps in CoT 

plans generated at iteration 𝑡}

optimize the model parameters 𝜃𝑡 to 
improve the generation of high-quality reasoning chains



This objective encourages the model to produce step-by-step reasoning that 
correctly:
1. checks all necessary preconditions before applying actions;
2. tracks state changes resulting from action effects; and 
3. detects logical inconsistencies in proposed plans.

Reasoning Chain Optimization: θ𝑡
𝑟 = 𝜃𝑡 − 𝛿1 ∇𝜃𝑡 L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔(. )
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Reasoning Chain Optimization
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L𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 𝜃𝑡 ,𝔻𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔
𝑡 =

1

|𝔻𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔
𝑡 |

෍

𝑠𝑖−1,𝑎𝑖,𝑠𝑖,𝑓𝑖 ∈𝔻𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔
𝑡

𝑑 𝑠𝑖 , 𝑠𝑖
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

+ 𝜆𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘  L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

L𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 =

0       if action 𝑎𝑖 is valid 

𝛼𝑝𝑟𝑒  if precondition violation detected

𝛼𝑒𝑓𝑓  if incorrect effect applied

𝛼𝑔𝑜𝑎𝑙 if goal not achieved



End-Task (Final) Performance Optimization
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𝜃𝑡+1 = θ𝑡
𝑟 − 𝛿2 ∇𝜃𝑡

𝑟 L𝑓𝑖𝑛𝑎𝑙(𝜃𝑡
𝑟 ,𝔻𝑓𝑖𝑛𝑎𝑙

𝑡 )

loss function that measures measures how well 

the final outputs match the expected answers in 

the training data

{ 𝑑𝑗 , 𝑝𝑗 , 𝜋𝑖
𝑡 , 𝑣𝑗

𝑡 ∶ ∀ problems 𝑗 at iteration 𝑡}

optimize from the reasoning-improved parameters θ𝑡
𝑟  to enhance overall planning



This objective ensures that 
improvements in logical reasoning translate to 
practical planning capability of producing accurate plans.

End-Task Performance Optimization: 𝜃𝑡+1 = θ𝑡
𝑟 − 𝛿2 ∇𝜃𝑡

𝑟 L𝑓𝑖𝑛𝑎𝑙(. )
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RQ1: Does logical CoT instruction tuning improve plan validity compared to 
standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning 
performance?

RQ3: How well does the approach generalize across different planning 
domains?

Empirical Evaluation: Objectives
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Empirical Evaluation: Dataset and Models

Three Domains:
• Blockworld
• Logistics
• Mystery Blocksworld

Three Models:
• Llama-3-8B
• GPT-4
• Gemma-3-270M

Benchmark

Slide  23



Logical CoT instruction tuning improves Plan Validity
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Detailed feedback is better than Binary Feedback
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PDDLInstruct’s improved performance generalizes across domains

Slide  26



• Optimizing instruction tuning data.

• Fine-grained analysis of planning performance.

• Comparison with SoTA symbolic planners.

• Extending domain coverage.

Limitations
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A Collaborative Numeric Task Planning Framework 
based on Constraint Translations using LLMs

Ngoc La Pulkit Verma Julie A. ShahAnthony Favier

ICAPS 2025 Workshop on Planning in the Era of LLMs (LM4Plan @ ICAPS25)
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Formal Automated Planning

Requires: 
• programming knowledge. 
• technical expert interventions.



• Avoid “intuitively bad solutions” and 
focus 

• Explore specific strategies in a “Let’s try 
this and rollback” approach.

• Dynamically refine solutions and iterate 
toward more effective outcomes. 

Improve Planning Accessibility
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A symbolic automated 
planner computes plans

An LLM-based system acts as an 
interface and for model elicitation

Hybrid Collaborative Planning Framework 
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Human can influence problem solving,
 without technical expertise requirements

Hybrid Collaborative Planning Framework 
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Main capabilities: Chat, Suggestions, Translation
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• Get insight on the problem

• Summarize problem

• Modify existing plans

• No PDDL for user

Chat 

Chat Capability
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• Retrieve external 
information (RAG) and real-

time APIs.

• Can generate real-time 

weather constraints, 

not modeled in original PDDL 
problem

Highlight information, 
Make suggestions

Providing Suggestions Capability
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• Translate human guidance 
into planning constraints

• The updated problem is 
solved by symbolic planner

• Simulator to visualize plan

ENHSP: Scala ECAI’16

NTCORE+: Bonassi AAAI’24PDSim: Pellegrin ICAPS’24

Main contribution:
Planning + Translation

Translation Capability



37

1) Human input
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2) Added

Constraints
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3) Plan
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4) Simulation
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Translate user inputs as guidance for the solver

Refine 
user 

inputs

1

Formal 
encoding

2

User
Automated 

SolverTranslation

Two-step process:

Guidance Translation
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ECODING: LLM alone

+ VERIFIER: Symbolic syntax checker

+ DECOMP: Constraint decomposition

+ HUMAN: Human interventions on decomposition  

4 Settings to evaluate our translation pipeline:

Evaluation of translation quality: Ablation Study
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Model:

Claude Sonnet 4

(thinking enabled)

Correct Syntax
● LLM alone makes syntax mistakes

● Symbolic verifier feedback fixes syntax mistakes

Evaluation of translation quality: Ablation Study
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Satisfying semantic accuracy 
● Decomposition no direct effect

● But allows for human review 

● Human intervention significantly improves correctness 

Model:

Claude Sonnet 4

(thinking enabled)Evaluation of translation quality: Ablation Study



45

Seems faster than human experts
● Ours ~82s (SD=53.7)  vs.  Prior work 180s (SD=78)  

● But comparison maybe unfair 

○ similar but not identical constraints

Model:

Claude Sonnet 4

(thinking enabled)Evaluation of translation quality: Ablation Study
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Hybrid collaborative planning framework 
(neuro-symbolic)

Creates a collaborative, mixed-initiative planning scheme where the human 
can influence problem solving, without technical expertise requirements
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