

Teaching LLMs to Plan: From Chain-of-Thought Instruction Tuning to Collaborative Constraint Translation

Pulkit Verma

How do we combine human expertise with machine speed and scale, especially when lives are on the line?

The Research Gap

- Automated planners are powerful but require expert knowledge.
- Humans have intuition, but can't solve complex problems fast enough.
- LLMs are unreliable for critical decision-making.

What if we could have a system where domain experts could guide AI planning in natural language and trust that the results are valid?

Can we make LLMs reliable planners
AND
use them to make planning accessible?

PDDL-Instruct: Enhancing Symbolic Planning Capabilities in LLMs through Logical Chain-of-Thought Instruction Tuning

Pulkit Verma*

Ngoc La*

Anthony Favier*

Swaroop Mishra†

Julie A. Shah*

Microsoft AI

Can we leverage LLMs' reasoning capabilities for Planning?

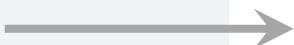
- What works for reasoning in LLMs?
- How to leverage it for planning?

Planning Domain Definition Language (PDDL)

```
(:action pickup
```

```
:parameters (?ob)
```

```
:precondition (and  
  (handempty)  
  (ontable ?ob))
```



Precondition: This condition must be true for this action to execute

```
:effect (and  
  (not (handempty))  
  (not (ontable ?ob))  
  (holding ?ob))
```


Effect: This is a set of conditions, one of which becomes true when this action is executed

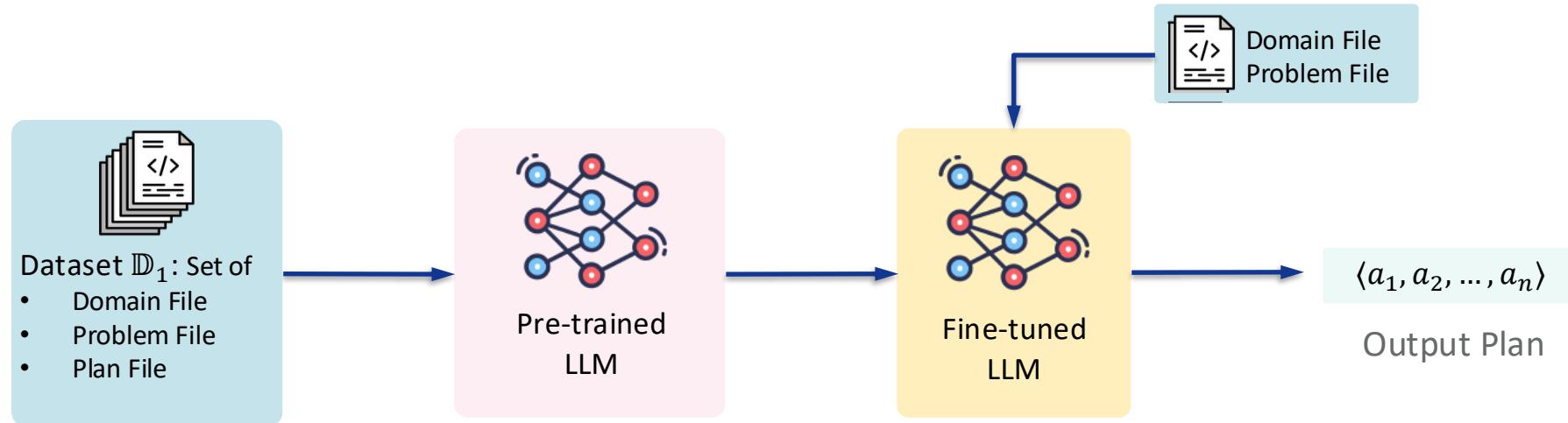
```
)
```

What works for reasoning in LLMs?

- Finetuning
- Instruction tuning (finetuning with instructions)
- Chain-of-Thought prompting

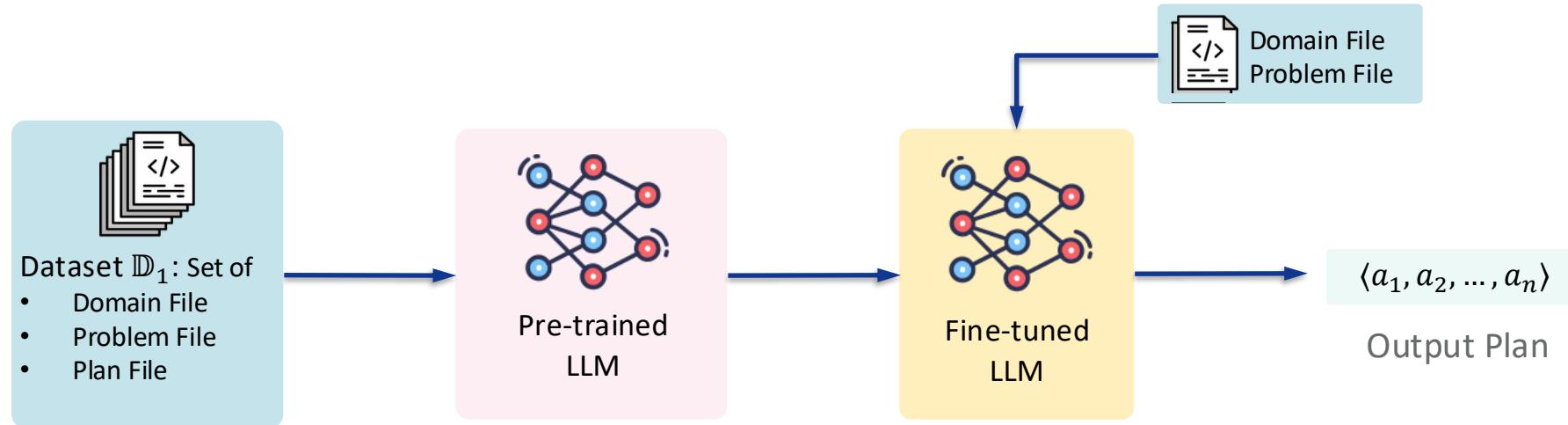
Finetuning

Adapt a pre-trained general LLM to excel at a specific task (planning) by training on domain examples.



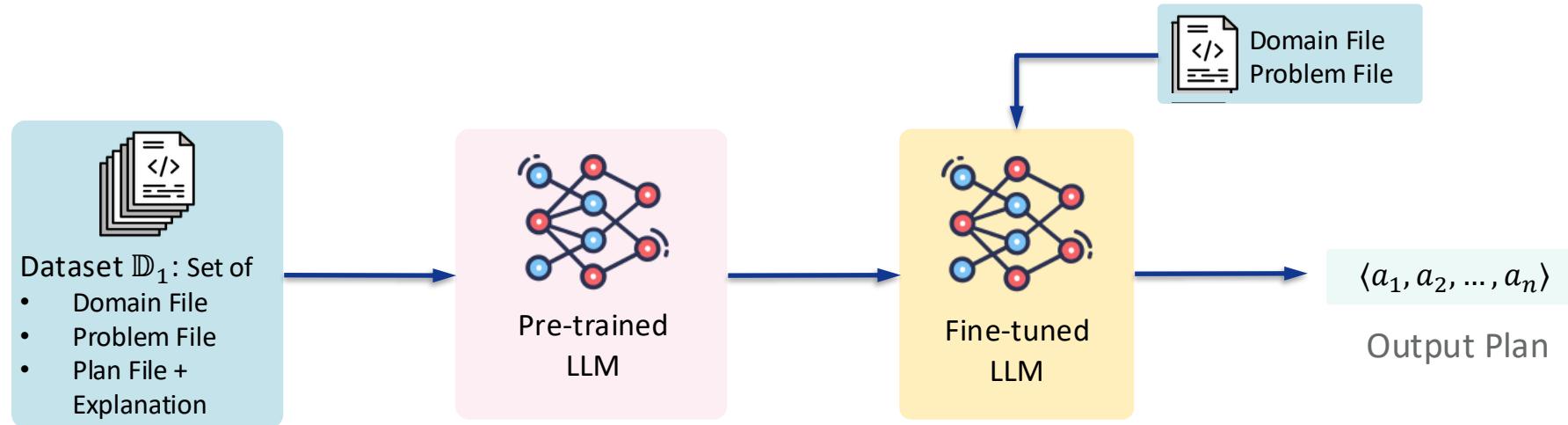
Finetuning with Negative Examples

Add some failing plans, label them as incorrect, and add them to the finetuning data.

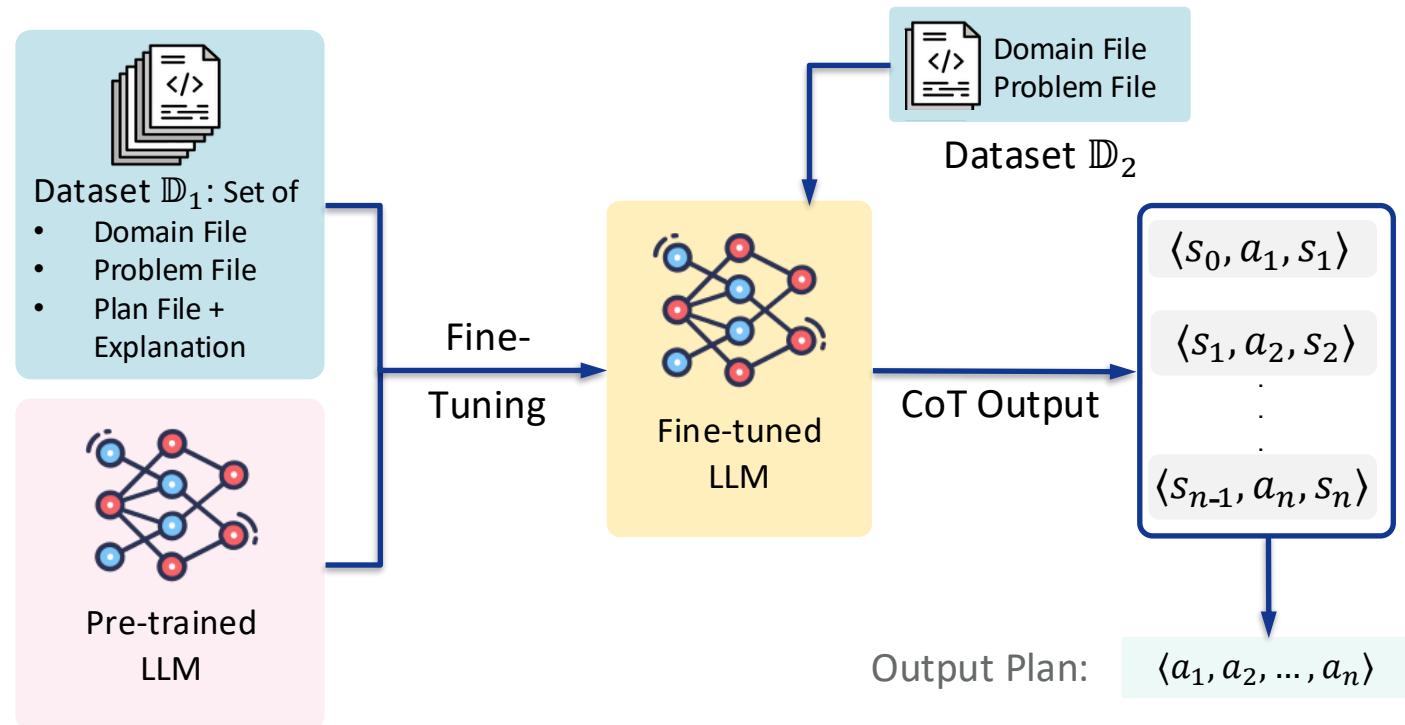


Instruction Finetuning

Add Explanations: Instructions teach the model **WHAT** planning means, not just **PATTERNS** in data. Tell it to check preconditions, apply effects, and verify goals.

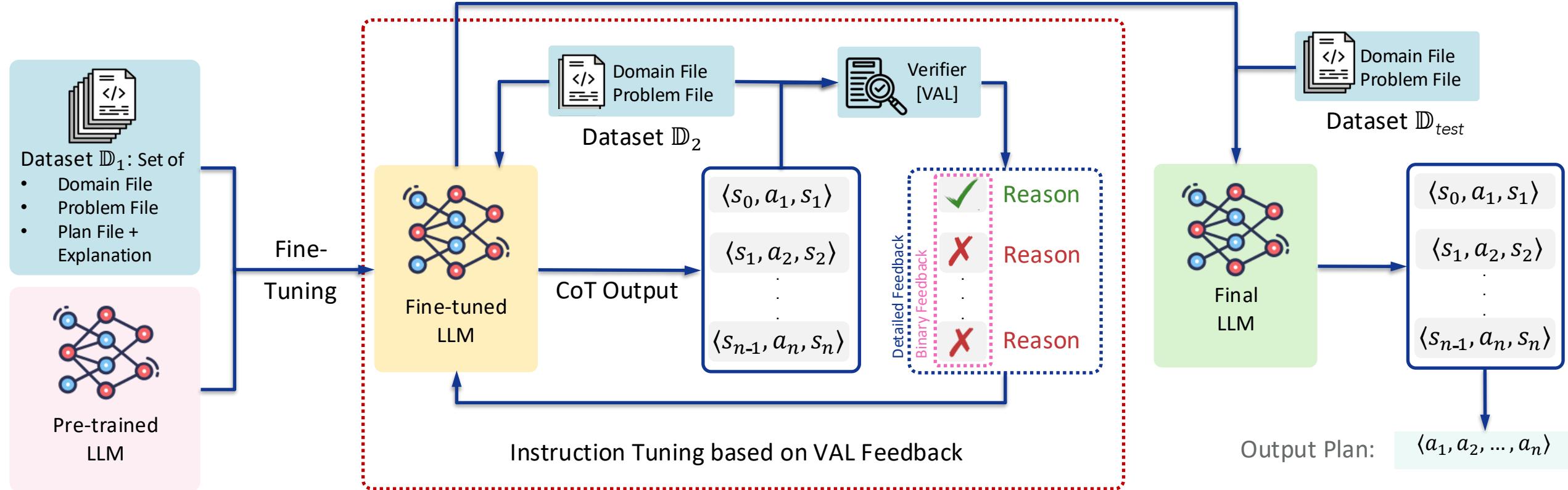


Augment finetuned LLM with Chain-of-Thought Prompting



Making the model show intermediate reasoning steps for planning instead of jumping to the final answer.

PDDLIInstruct



Reasoning Chain Optimization

optimize the model parameters θ_t to
improve the generation of high-quality reasoning chains

$$\theta_t^r = \theta_t - \delta_1 \nabla_{\theta_t} \mathcal{L}_{reasoning}(\theta_t, \mathbb{D}_{reasoning}^t)$$

$\{(s_{i-1}, a_i, s_i, f_i) : \forall \text{ steps in CoT plans generated at iteration } t\}$

loss function that measures the quality of the generated reasoning chains

Reasoning Chain Optimization: $\theta_t^r = \theta_t - \delta_1 \nabla_{\theta_t} \mathcal{L}_{reasoning}(\cdot)$

This objective encourages the model to produce step-by-step reasoning that correctly:

1. checks all necessary preconditions before applying actions;
2. tracks state changes resulting from action effects; and
3. detects logical inconsistencies in proposed plans.

Reasoning Chain Optimization

$$L_{reasoning}(\theta_t, \mathbb{D}_{reasoning}^t) =$$

$$\frac{1}{|\mathbb{D}_{reasoning}^t|} \sum_{(s_{i-1}, a_i, s_i, f_i) \in \mathbb{D}_{reasoning}^t} d(s_i, s_i^{expected}) + \lambda_{feedback} L_{feedback}$$

$$L_{feedback} = \begin{cases} 0 & \text{if action } a_i \text{ is valid} \\ \alpha_{pre} & \text{if precondition violation detected} \\ \alpha_{eff} & \text{if incorrect effect applied} \\ \alpha_{goal} & \text{if goal not achieved} \end{cases}$$

End-Task (Final) Performance Optimization

optimize from the reasoning-improved parameters θ_t^r to enhance overall planning

$$\theta_{t+1} = \theta_t^r - \delta_2 \nabla_{\theta_t^r} \mathcal{L}_{final}(\theta_t^r, \mathbb{D}_{final}^t)$$

$\{(d_j, p_j, \pi_i^t, v_j^t) : \forall \text{ problems } j \text{ at iteration } t\}$

loss function that measures how well the final outputs match the expected answers in the training data

End-Task Performance Optimization: $\theta_{t+1} = \theta_t^r - \delta_2 \nabla_{\theta_t^r} \mathcal{L}_{final}(\cdot)$

This objective ensures that improvements in logical reasoning translate to practical planning capability of producing accurate plans.

Empirical Evaluation: Objectives

RQ1: Does logical CoT instruction tuning improve plan validity compared to standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning performance?

RQ3: How well does the approach generalize across different planning domains?

Empirical Evaluation: Dataset and Models

Three Domains:

- Blockworld
- Logistics
- Mystery Blocksworld

Three Models:

- Llama-3-8B
- GPT-4
- Gemma-3-270M

Benchmark

PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change

Karthik Valmeekam
School of Computing & AI
Arizona State University, Tempe.
kvalmeek@asu.edu

Matthew Marquez
School of Computing & AI
Arizona State University, Tempe.
mmarqu22@asu.edu

Alberto Olmo
School of Computing & AI
Arizona State University, Tempe.
aolmoher@asu.edu

Sarith Sreedharan*
Department of Computer Science,
Colorado State University, Fort Collins.
sarith.sreedharan@colostate.edu

Subbarao Kambhampati
School of Computing & AI
Arizona State University, Tempe.
rao@asu.edu

Logical CoT instruction tuning improves Plan Validity

Model	Domain	Baseline	Only P1	Only P2		PDDL-INSTRUCT			
				Detailed		Binary		Detailed	
				$\eta = 15$	$\eta = 10$	$\eta = 15$	$\eta = 10$	$\eta = 15$	
Llama-3	Blocksworld	28%	78%	72%	84%	89%	91%	94%	
	Mystery BW	1%	32%	17%	47%	49%	59%	64%	
	Logistics	11%	23%	45%	61%	72%	75%	79%	
GPT-4	Blocksworld	35%	41%	76%	79%	84%	87%	91%	
	Mystery BW	3%	17%	19%	39%	44%	54%	59%	
	Logistics	6%	27%	51%	64%	69%	72%	78%	
Gemma-3	Blocksworld	7%	12%	19%	37%	39%	54%	56%	
	Mystery BW	0%	2%	3%	22%	28%	24%	28%	
	Logistics	2%	13%	11%	18%	33%	27%	43%	

Detailed feedback is better than Binary Feedback

Model	Domain	Baseline	Only P1	Only P2		PDDL-INSTRUCT			
				Detailed		Binary		Detailed	
				$\eta = 15$	$\eta = 10$	$\eta = 15$	$\eta = 10$	$\eta = 15$	
Llama-3	Blocksworld	28%	78%	72%	84%	89%	91%	94%	
	Mystery BW	1%	32%	17%	47%	49%	59%	64%	
	Logistics	11%	23%	45%	61%	72%	75%	79%	
GPT-4	Blocksworld	35%	41%	76%	79%	84%	87%	91%	
	Mystery BW	3%	17%	19%	39%	44%	54%	59%	
	Logistics	6%	27%	51%	64%	69%	72%	78%	
Gemma-3	Blocksworld	7%	12%	19%	37%	39%	54%	56%	
	Mystery BW	0%	2%	3%	22%	28%	24%	28%	
	Logistics	2%	13%	11%	18%	33%	27%	43%	

PDDLIInstruct's improved performance generalizes across domains

Model	Domain	Baseline	Only P1	Only P2		PDDLI-INSTRUCT			
				Detailed		Binary		Detailed	
				$\eta = 15$	$\eta = 10$	$\eta = 15$	$\eta = 10$	$\eta = 15$	
Llama-3	Blocksworld	28%	78%	72%	84%	89%	91%	94%	
	Mystery BW	1%	32%	17%	47%	49%	59%	64%	
	Logistics	11%	23%	45%	61%	72%	75%	79%	
GPT-4	Blocksworld	35%	41%	76%	79%	84%	87%	91%	
	Mystery BW	3%	17%	19%	39%	44%	54%	59%	
	Logistics	6%	27%	51%	64%	69%	72%	78%	
Gemma-3	Blocksworld	7%	12%	19%	37%	39%	54%	56%	
	Mystery BW	0%	2%	3%	22%	28%	24%	28%	
	Logistics	2%	13%	11%	18%	33%	27%	43%	

Limitations

- Optimizing instruction tuning data.
- Fine-grained analysis of planning performance.
- Comparison with SoTA symbolic planners.
- Extending domain coverage.

A Collaborative Numeric Task Planning Framework based on Constraint Translations using LLMs

Anthony Favier

Ngoc La

Pulkit Verma

Julie A. Shah

Formal Automated Planning

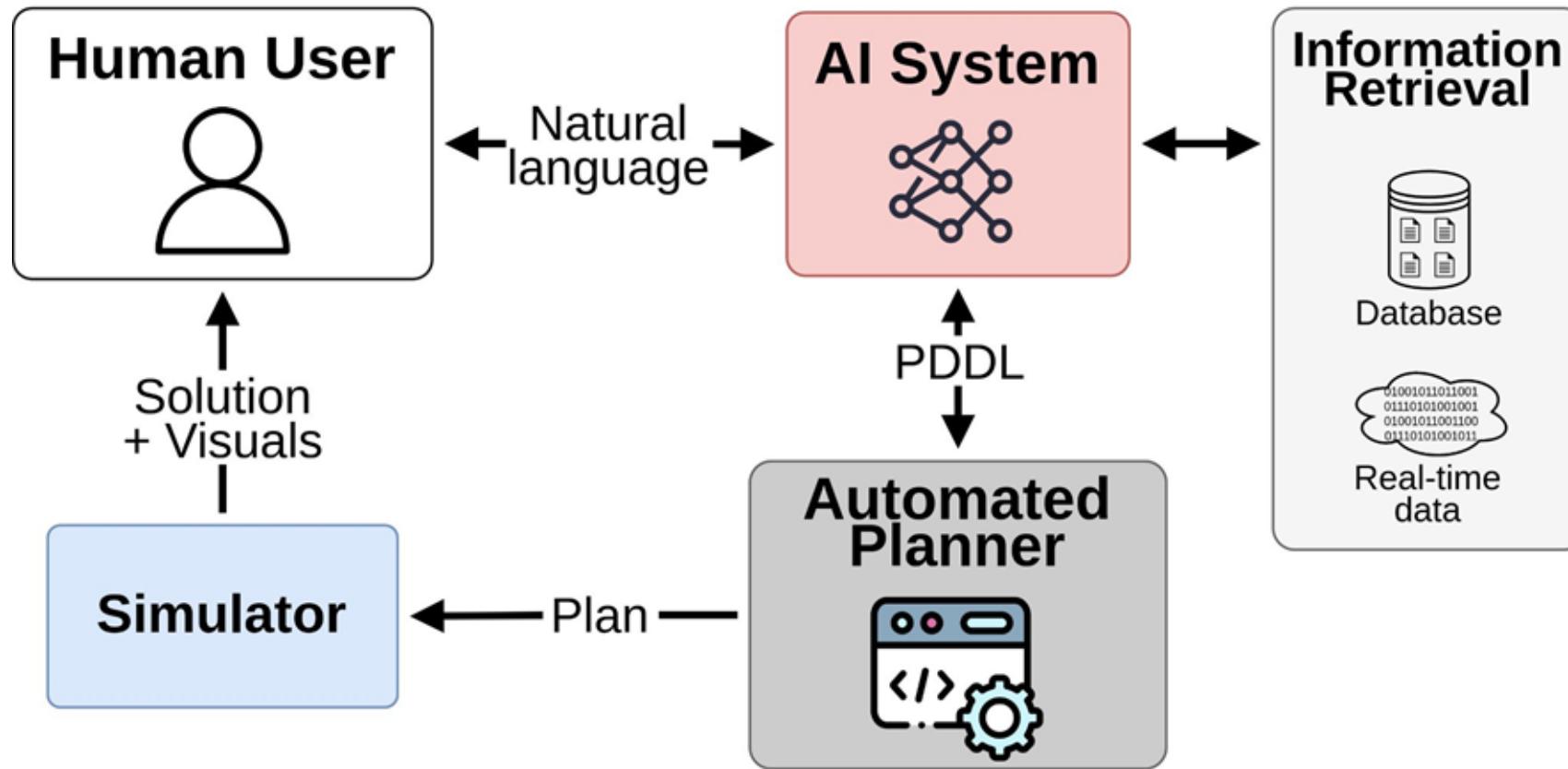
Requires:

- programming knowledge.
- technical expert interventions.

Improve Planning Accessibility

- Avoid “intuitively bad solutions” and focus
- Explore specific strategies in a “Let’s try this and rollback” approach.
- Dynamically refine solutions and iterate toward more effective outcomes.

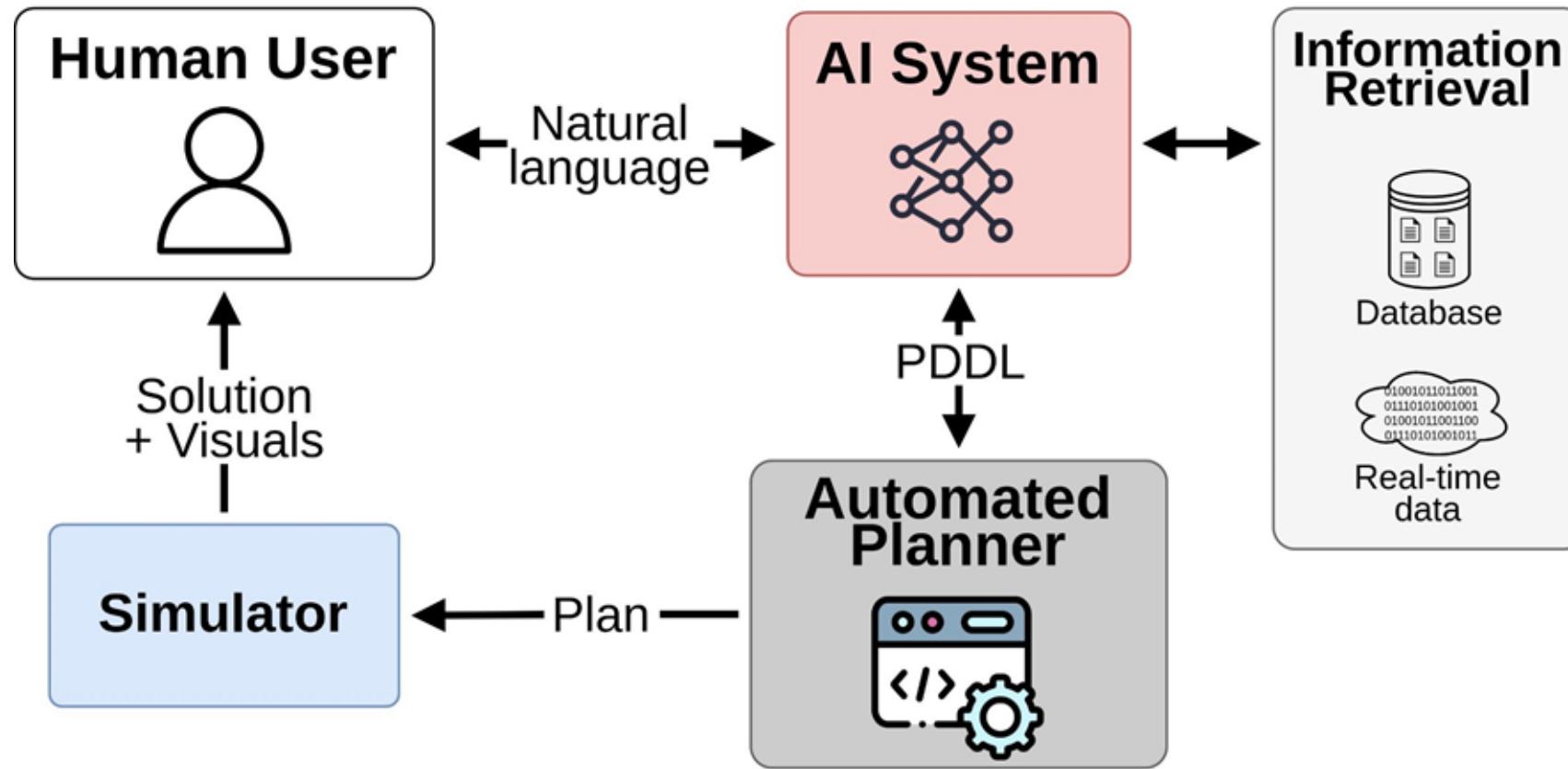
Hybrid Collaborative Planning Framework



A **symbolic** automated planner computes plans

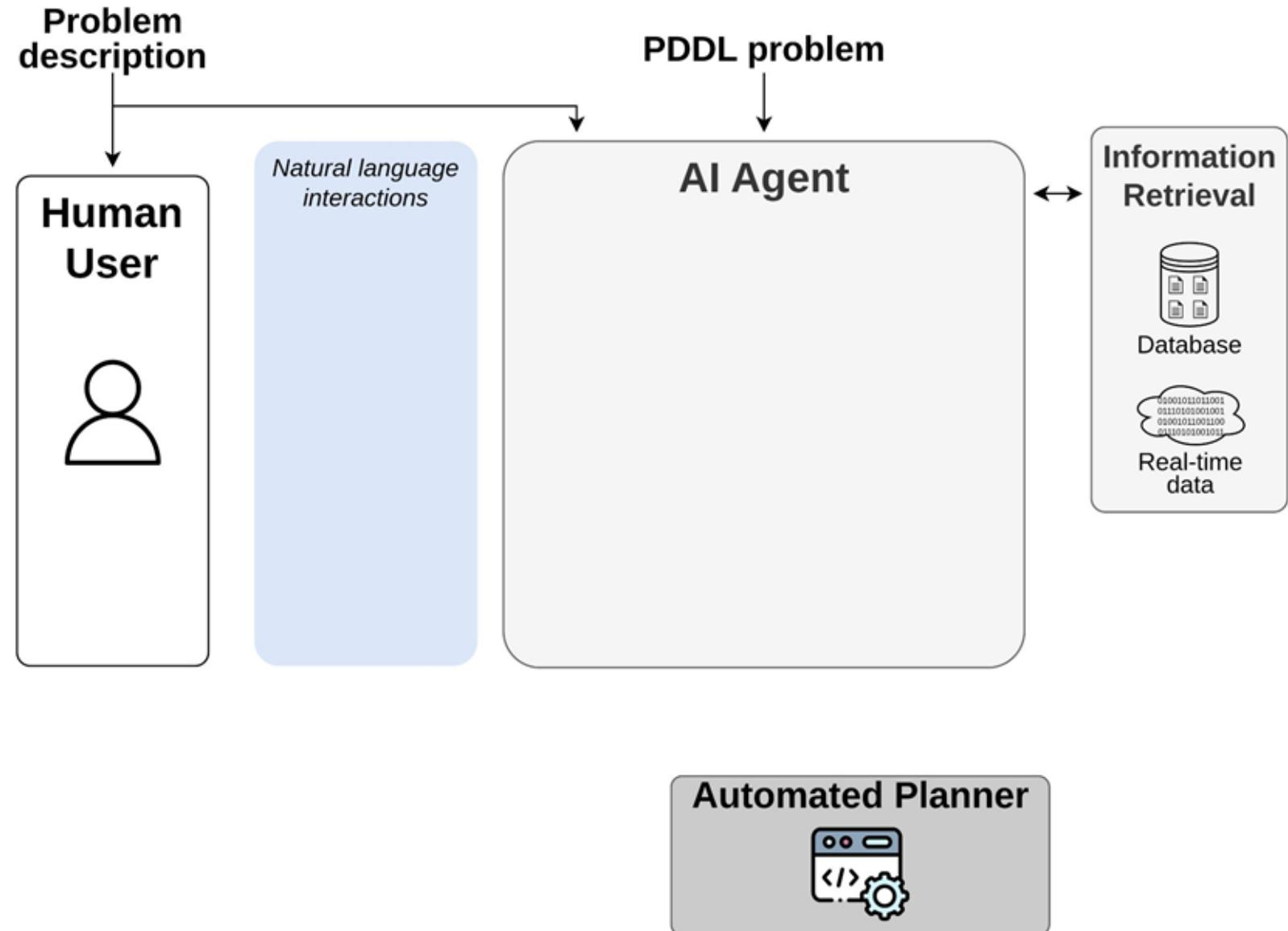
An **LLM-based system** acts as an interface and for model elicitation

Hybrid Collaborative Planning Framework



Human can **influence** problem solving,
without technical expertise requirements

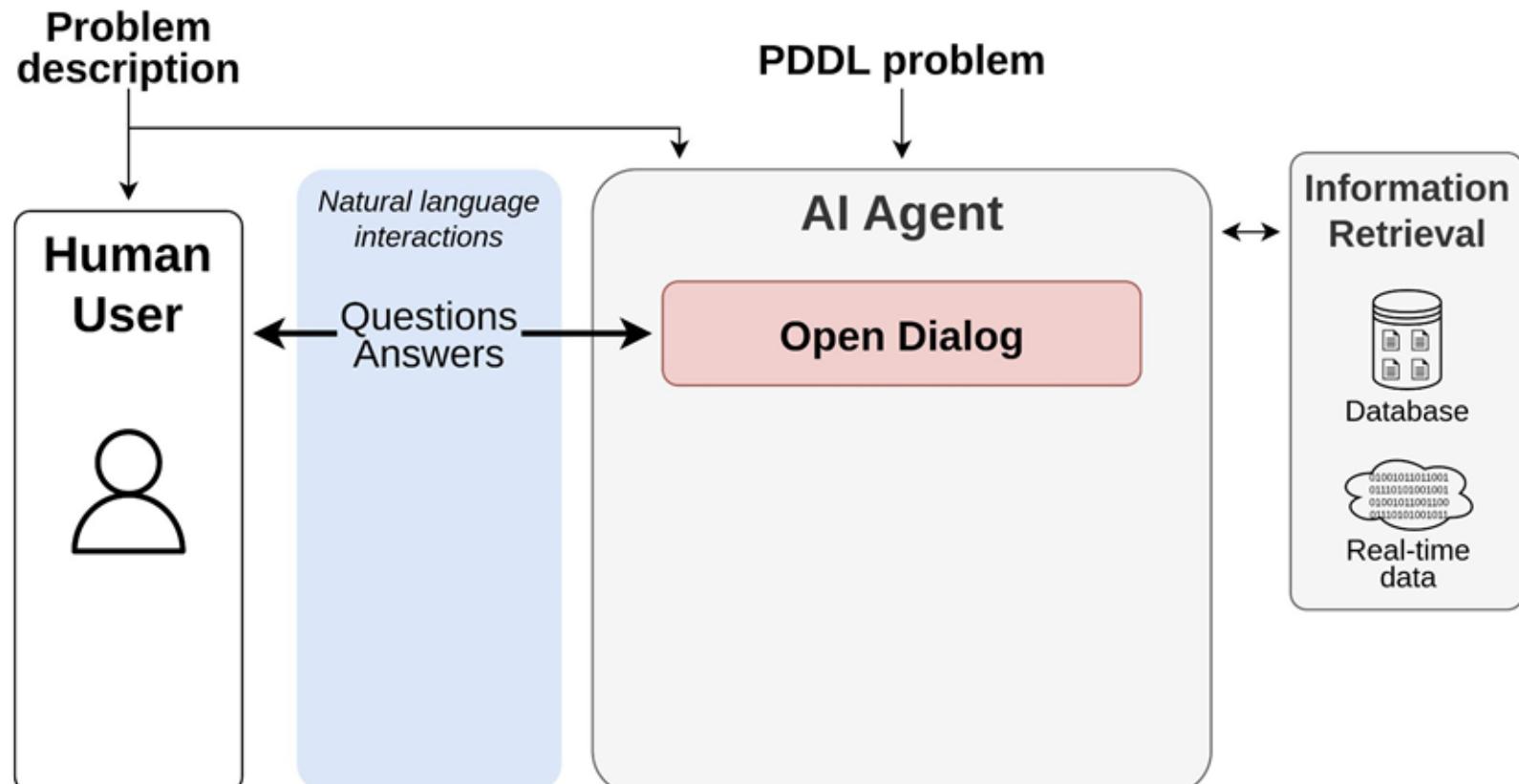
Main capabilities: Chat, Suggestions, Translation



Chat Capability

Chat

- Get insight on the problem
- Summarize problem
- Modify existing plans
- **No PDDL** for user

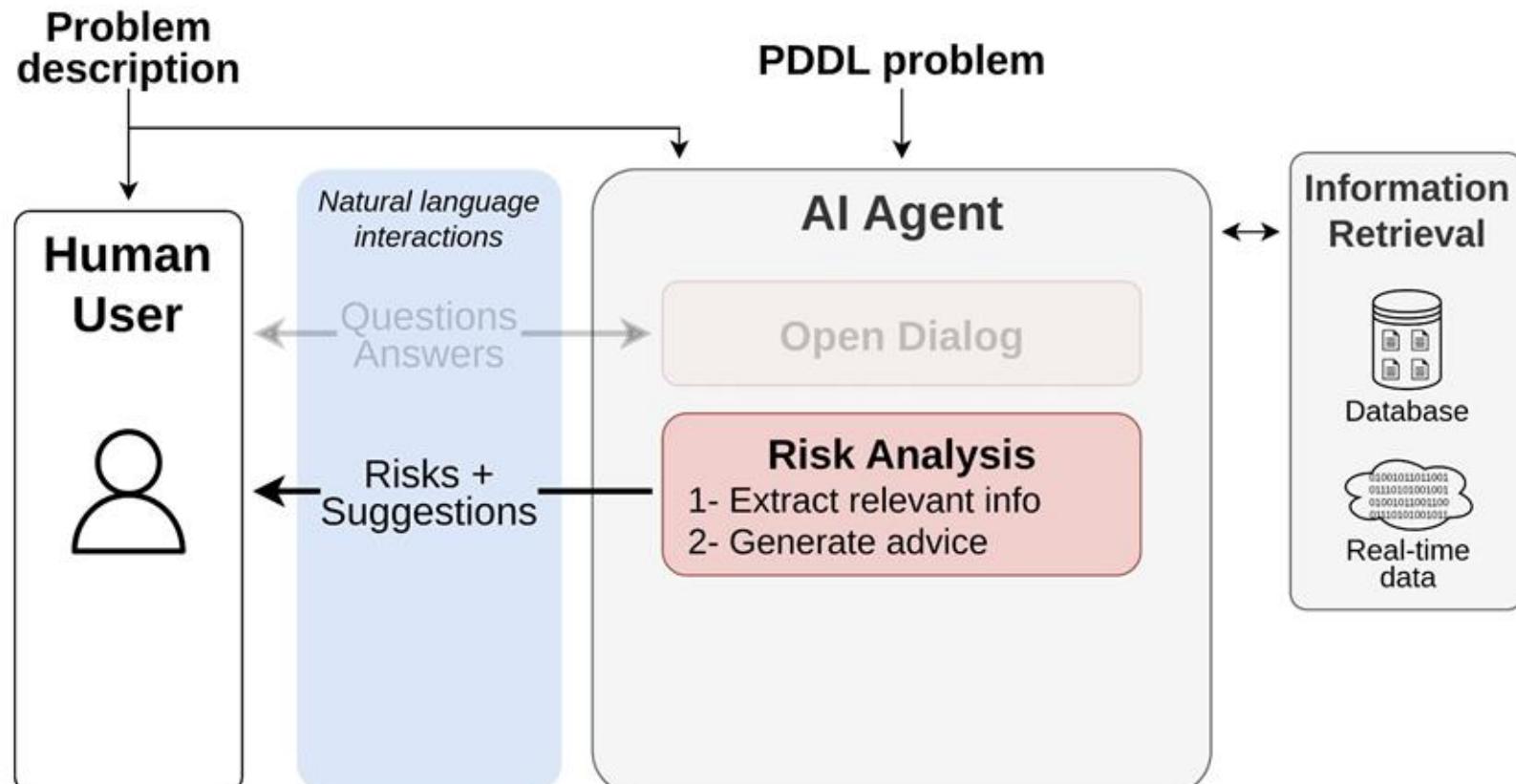
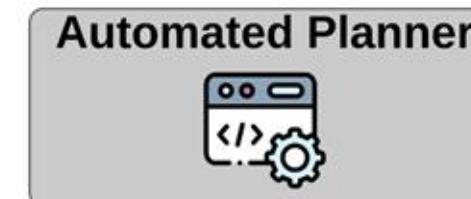


Automated Planner

Providing Suggestions Capability

Highlight information,
Make suggestions

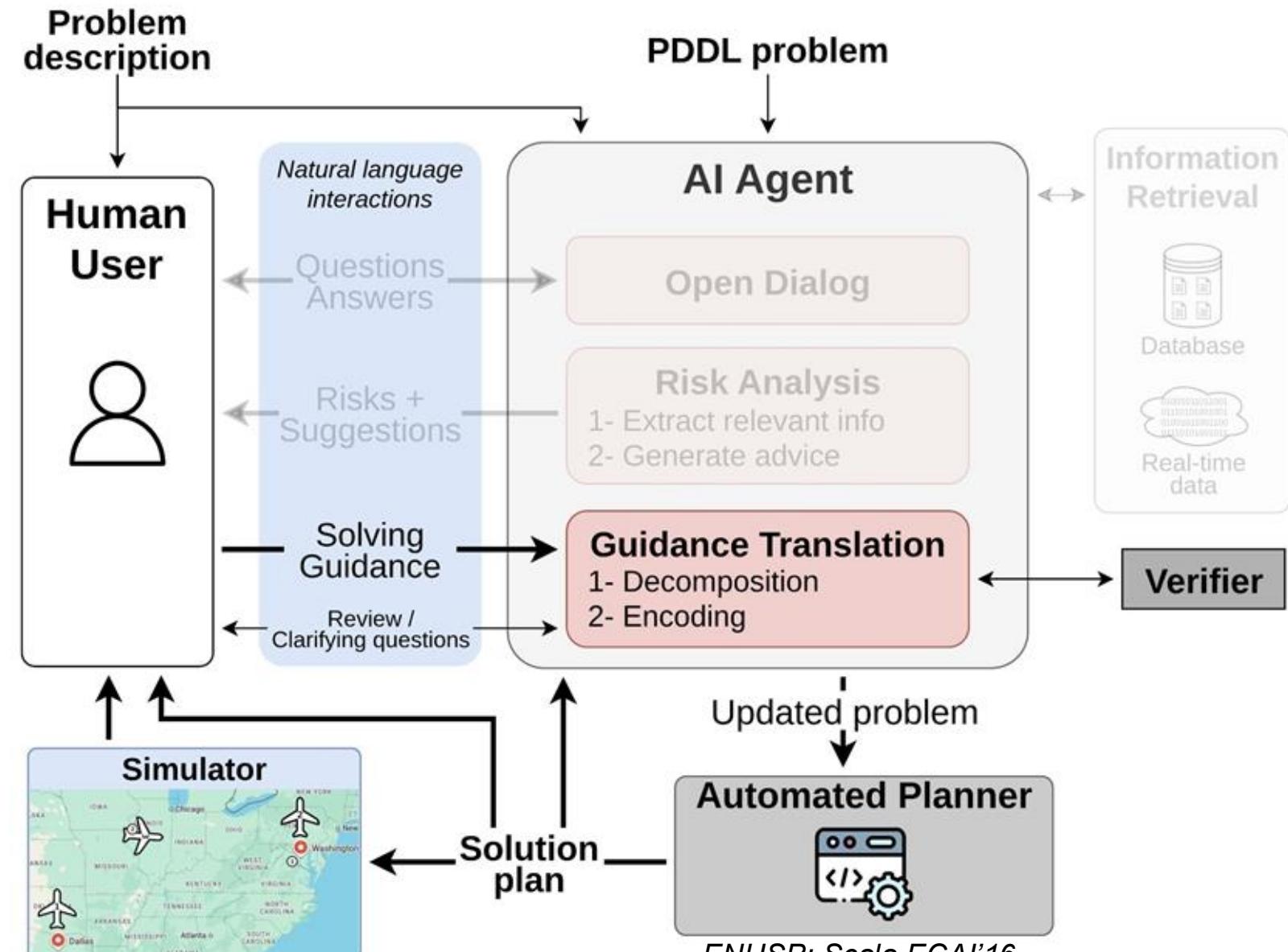
- Retrieve **external** information (RAG) and real-time APIs.
- Can generate real-time **weather** constraints, not modeled in original PDDL problem



Translation Capability

Main contribution: Planning + Translation

- **Translate** human guidance into planning constraints
- The updated problem is **solved** by **symbolic** planner
- **Simulator** to **visualize** plan



No constraints**Plans****Previous:**

None

Current:

None

Setting: DEFAULT

Planning mode: anytime, TO=15.0

Problem (zenoreal):

- NumericTCORE/benchmark/ZenoTravel-no-constraint/domain_with_n.pddl
- PDDL/zenoreal.pddl

==== ADDING CONSTRAINT ===

Enter your constraint:

1) Human input

Elapsed Time: 0.0 s

Confirm

Translate

Risk Analysis

Chat

Plan

R0 - Only use plane1

- D1- Plane2 cannot board any passengers
- D2- Plane2 cannot debark any passengers
- D3- Plane2 cannot fly slow between any cities
- D4- Plane2 cannot fly fast between any cities
- D5- Plane2 cannot refuel
- D6- Plane3 cannot board any passengers
- D7- Plane3 cannot debark any passengers
- D8- Plane3 cannot fly slow between any cities
- D9- Plane3 cannot fly fast between any cities
- D10- Plane3 cannot refuel

2) Added Constraints

Plans

Previous:

None

Current:

None

- Plane3 cannot fly slow between any cities
- Plane3 cannot fly fast between any cities
- Plane3 cannot refuel

Are you satisfied with the decomposition? If not, provide any desired feedback or type 'explain'.

User: yes

Encoding ...

Elapsed Time: 0.0 s

Confirm

Translate

Risk Analysis

Chat

Plan

R0 - Only use plane1

D1- Plane2 cannot board any passengers
D2- Plane2 cannot debark any passengers
D3- Plane2 cannot fly slow between any cities
D4- Plane2 cannot fly fast between any cities
D5- Plane2 cannot refuel
D6- Plane3 cannot board any passengers
D7- Plane3 cannot debark any passengers
D8- Plane3 cannot fly slow between any cities
D9- Plane3 cannot fly fast between any cities
D10- Plane3 cannot refuel

3) Plan

- PDDL/zenoreal.pddl

Constraints loaded

==== PLANNING ===

Compiling ... OK [1.52s]

Planning (anytime, TO=15.0s) ... OK [15.06s]

Elapsed Time: 16.5 s

Confirm

Translate

Risk Analysis

Chat

Plan

Plans

Previous:

None

Current:

Plan-Length: 48
Metric: 15536.0
Planning time: 15.06
Found Plan:
0.0: (refuel_plane1)
1.0: (board_person4_plane1_boston)
2.0: (flyfast_plane1_boston_washington)
3.0: (board_person2_plane1_washington)
4.0: (board_person8_plane1_washington)
5.0: (flyslow_plane1_washington_boston)
6.0: (refuel_plane1)
7.0: (flyslow_plane2_washington_washington)
8.0: (flyslow_plane1_boston_dallas)
9.0: (board_person9_plane1_dallas)
10.0: (flyfast_plane1_dallas_seattle)
11.0: (debark_person9_plane1_seattle)
12.0: (refuel_plane1)
13.0: (flyslow_plane1_seattle_denver)
14.0: (debark_person4_plane1_denver)
15.0: (flyslow_plane1_denver_washington)
16.0: (refuel_plane1)
17.0: (flyslow_plane1_washington_seattle)
18.0: (flyslow_plane1_seattle_dallas)

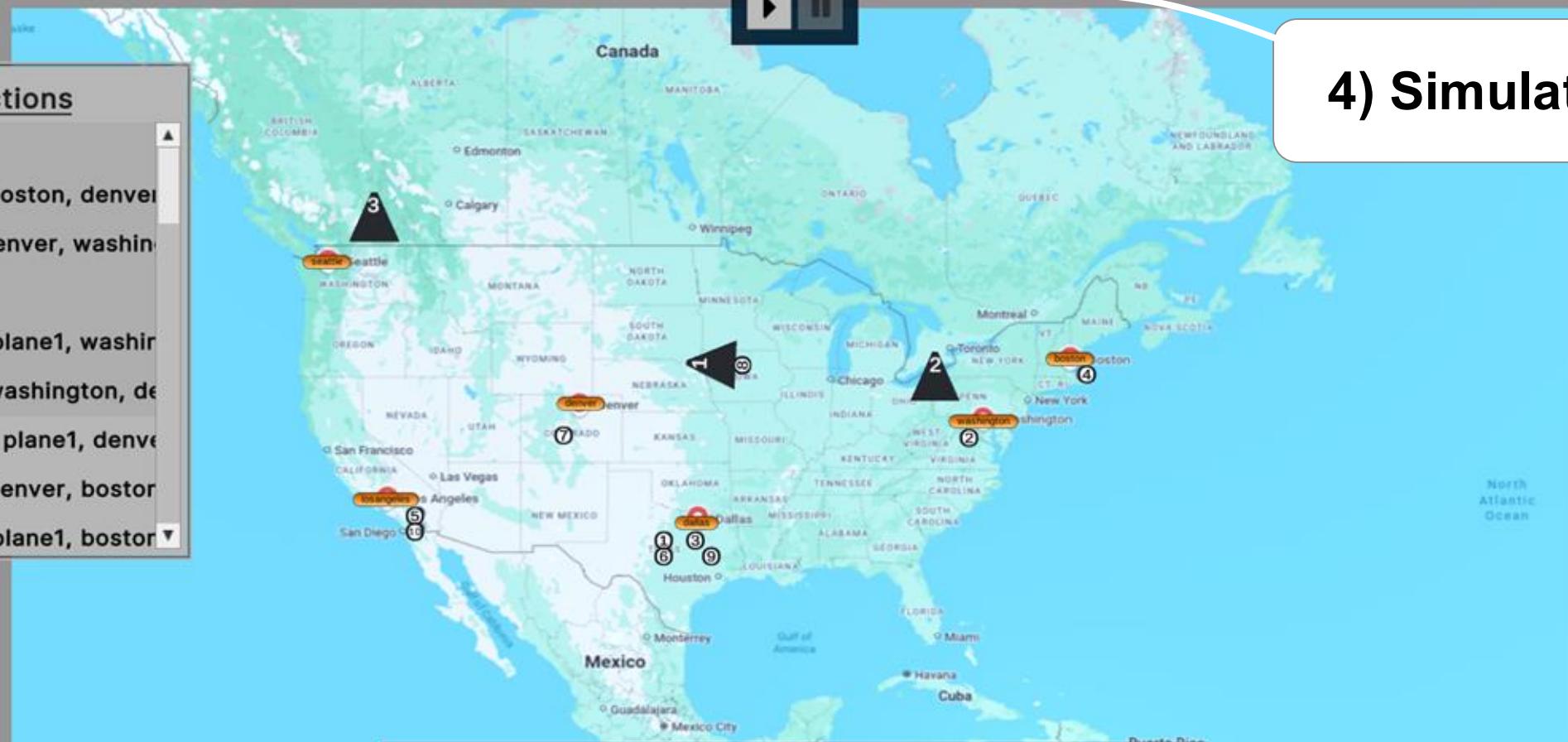
ZenoR

PDSim

4) Simulation

Plan Actions

```
refuel (plane1)  
flyslow (plane1, boston, denver)  
flyfast (plane1, denver, washington)  
refuel (plane1)  
board (person8, plane1, washington)  
flyslow (plane1, washington, denver)  
debark (person8, plane1, denver)  
flyslow (plane1, denver, boston)  
board (person4, plane1, boston)
```



Plan Panel

Action Tab

Speed Controls

Object Info Panel

Camera Controls

Elapsed Time: 16.5 s

Confirm

Translate

Risk Analysis

Chat

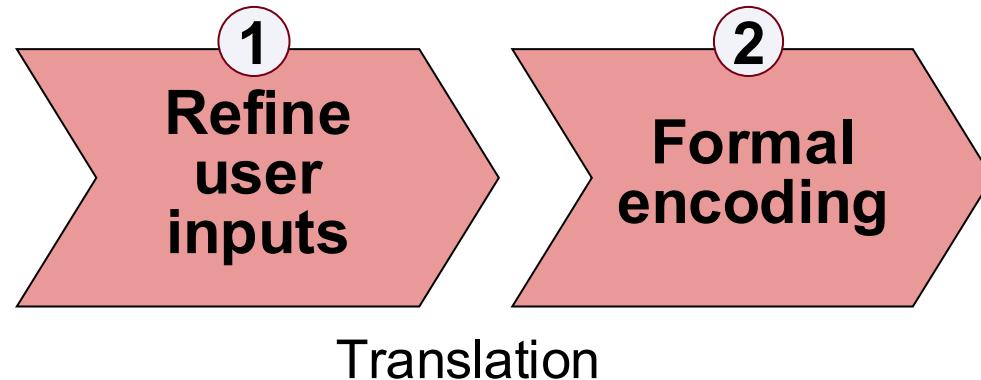
Plan

Guidance Translation

Translate user inputs as guidance for the solver

Two-step process:

User



Automated
Solver

Evaluation of translation quality: Ablation Study

4 Settings to evaluate our translation pipeline:

ECODING: LLM alone

- + **VERIFIER**: Symbolic syntax checker
- + **DECOMP**: Constraint decomposition
- + **HUMAN**: Human interventions on decomposition

Evaluation of translation quality: Ablation Study

Setting	Translation		Human interventions	
	Parsable	Correct	Time (s)	
Encoding	26	19	29.3 ± 12.3	0
+ Verifier	30	20	35.8 ± 13.5	0
+ Decomposition				
+ Human				

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Correct Syntax

- LLM alone makes syntax mistakes
- Symbolic verifier feedback fixes syntax mistakes

Evaluation of translation quality: Ablation Study

Setting	Translation		Human interventions	
	Parsable	Correct	Time (s)	
Encoding	26	19	29.3 ± 12.3	0
+ Verifier	30	20	35.8 ± 13.5	0
+ Decomposition	30	20	55.0 ± 26.2	0
+ Human	30	27	81.9 ± 53.7	12

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Satisfying semantic accuracy

- Decomposition no direct effect
- But allows for human review
- Human intervention significantly improves correctness

Evaluation of translation quality: Ablation Study

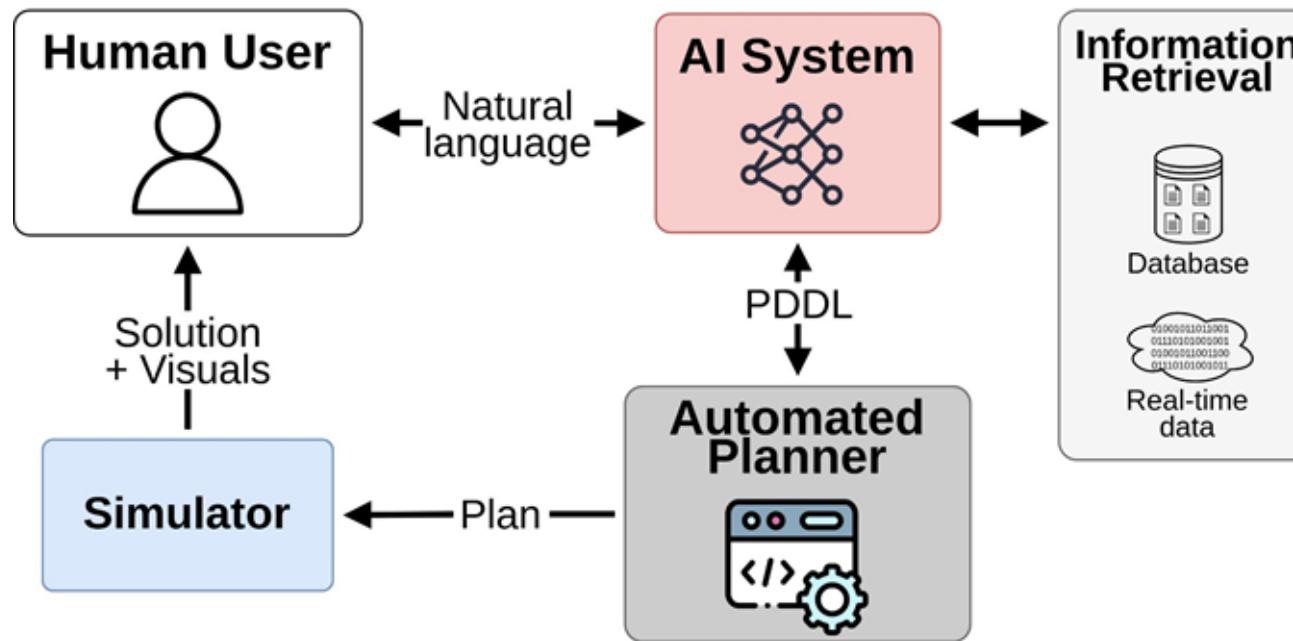
Setting	Translation		Human interventions
	Parsable	Correct	
Encoding	26	19	29.3 ± 12.3
+ Verifier	30	20	35.8 ± 13.5
+ Decomposition	30	20	55.0 ± 26.2
+ Human	30	27	81.9 ± 53.7

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Seems faster than human experts

- Ours ~82s (SD=53.7) vs. Prior work 180s (SD=78)
- But comparison maybe unfair
 - similar but not identical constraints

Hybrid collaborative planning framework (neuro-symbolic)



Creates a **collaborative, mixed-initiative planning** scheme where the human can influence problem solving, **without** technical expertise requirements

Teaching LLMs to Plan: From Chain-of-Thought Instruction Tuning to Collaborative Constraint Translation

Pulkit Verma

pulkitverma.net | pulkitv@cse.iitm.ac.in

