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How do we combine human expertise with machine speed
and scale, especially when lives are on the line?
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The Research Gap

» Automated planners are powerful but require expert knowledge.
e Humans have intuition, but can't solve complex problems fast enough.

e LLMs are unreliable for critical decision-making.
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What if we could have a system where domain experts could guide
Al planning in natural language and trust that the results are valid?
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Can we make LLMs reliable planners
AND
use them to make planning accessible?
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LLMs are good at Reasoning
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Abstract

We explore how ing a chain of thought—a series of i jate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.

Expenmcms on three large language models show that chain-of- Lhough( prompting

improves on a range of and symbolic
reasoning tasks. The empirical gains can bc striking. For instance, pmmplmg a
PalLM 540B with just eight chain-of-th achieves f-

accuracy on the GSM8K benchmark of mmh word problems, surpassing even
finetuned GPT-3 with a verifier.

Standard Prompting Chain-of-Thought Prompting

Recent works leverage the capabilities of large
language models (LMs) to perform complex
question answering in a few-shot setting by
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Abstract evaluations still focus on the linguistic capabili-
Current logical reasoning evaluations of Large ties of LLMs, ¢, £., reading understanding, with-
Languagt Models (LLMs) anmly foous out .much strategic thinking. Therefore, beneath
on single-tum and static soch the impressive linguistic ilities of LLMs, a
as arithmetic problems. The crucial prob- critical question that has piqued the curiosity of re-
lem of multi-turn, strategic reasoning is searchers and practitioners alike: “what lies beyond
under-explored. In this work, we analyze static logical reasoning for LLMs?"

the multi-turn strategic reasoning of LLMs Strategic multi-turn reasoning tasks
through text-driven complete- and incomplete- TR R R e

LLMs are bad at Planning

Position: LL.LMs Can’t Plan,

But Can Help Planning in LLM-Modulo Frameworks

K i' Karthik

Abstract

We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
{which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
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(A Benchmark for LLMs on Planning and Reasoning
about Change)
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bilities. We aim to evaluate (1) the effect
autonomously in commonsense planning ta
source of heuristic guidance for other agent
‘We conduct a systematic study by generatin
lar to the ones employed in the Internation:
LLMs in two distinct modes: autonomous :
LLMs’ ability to generate executable plans a
best model (GPT-4) having an average succ
However, the results in the heuristic mode
mode, we d rate that LLM d
for underlying sound planners and additio
help provide feedback on the generated plan
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A Critical Investigation
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Can Large Language Models Really Improve by

Self-critiquing Their Own Plans?
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Abstract

There have been widespread claims about Large Language Models (LLMs) being
able to successfully verify or self-critique their candidate solutions in reasoning
problems in an iterative mode. Intrigued by those claims, in this paper we set out
to investigate the verification/self-critiquing abilities of large language models in
the context of planning. We evaluate a planning system that employs LLMs for
bD(h plan generation and verification. We assess the verifier LLM’s performance
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Can we leverage LLMs’ reasoning capabilities for Planning?

» What works for reasoning in LLMs?

e How to leverage it for planning?
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Planning Domain Definition Language (PDDL)

(:action pickup
:parameters (?ob)

:precondition (and Precondition: This condition must be true for
(handempty) this action to execute
(ontable ?o0b))

:effect (and Effect: This is a set of conditions, one of which
(not (handempty)) becomes true when this action is executed

(not (ontable ?o0b))
(holding ?0ob))
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What works for reasoning in LLMs?

e Finetuning
e Instruction tuning (finetuning with instructions)

e Chain-of-Thought prompting
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Finetuning

Adapt a pre-trained general LLM to excel at a specific task (planning) by
training on domain examples.

</> Domain File
Problem File

[' </>
Dataset D: Setof —_— @ —_— (a4, ..,0,)

Domain File
Problem File Pre-trained Fine-tuned

Plan File LLM LLM

Output Plan
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Finetuning with Negative Examples

Add some failing plans, label them as incorrect, and add them to the
finetuning data.

</> Domain File
Problem File

[' i

»

Dataset ]D)]_: Set of — ‘ — —- (a1 a, . )
Domain File )
Problem File Pre-trained Fine-tuned Output Plan
Plan File LLM LLM
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Instruction Finetuning

Add Explanations: Instructions teach the model WHAT planning means, not just

PATTERNS in data. Tell it to check preconditions, apply effects, and verify goals.

</> Domain File
Problem File

[' i

N
Dataset Dq: Setof ' — — (aq,az, ..., Q)
Domain File )
Problem File Pre-trained Fine-tuned Output Plan
Plan File + LLM LLM
Explanation

Slide 14



Augment finetuned LLM with Chain-of-Thought Prompting

— TI> Domain File
ﬁ>_ ==| Problem File
Dataset D,

Dataset D;: Setof ___

Domain File -
Iy
Problem File (S0, a1, 1)
Plan File + . N
Explanation Fine- ' (51, a2, S2)
> — .

Tunin CoT Output .
P g Fine-tuned P _
Hel (Sn-ll An, STL>
»
Pre-trained Y
LLM Output Plan: (aq,ay, ..., ay)

Making the model show intermediate reasoning steps for planning instead of
jumping to the final answer.
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PDDLInstruct

— o " : Tl) Domain File
= ¢/> | Pomain F'I.e g@ Verifier : == Problem File
<> : == | Problem File s [VAL]
— : S Dataset D
Dataset I, test
Dataset D;: Setof __ 2 S, SR : \
«  Domain File : . : : i -
: : P p S, A1, S
*  Problem File { (S0, @1, 51) J Reason (S0, a1, 1)
e Plan File + xi
. Fine- » S1,a5,S 81 ) I S1, 42,8
Explanation i . (51, .2; 2) £ x Reason (51 .2 2)
Tuning : CoT Output o -
P & : Fine-tuned P _ 2i _ T.TI\?Il .
' LLM (Sna, @nySp) | EiZi X i Reason (Sn-1, Ans Sp)
» : f il | .............. Pl
Pre-trained 1
LLM Instruction Tuning based on VAL Feedback Output Plan: (31,42, -, an)

-------------------------------------------------------------------------------------------------------------------
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Reasoning Chain Optimization

optimize the model parameters 8, to
improve the generation of high-quality reasoning chains

/ - t
t — Ht R 51 VHt Lreasoning (Ht' ]D)reasoning)

{(s;_1,a;, s f;) : V steps in CoT
plans generated at iteration t}

loss function that measures the quality
of the generated reasoning chains
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Reasoning Chain Optimization: 6] = 6, — 6, V, L

reasoning ( )

This objective encourages the model to produce step-by-step reasoning that
correctly:

1. checks all necessary preconditions before applying actions;
2. tracks state changes resulting from action effects; and

3. detects logical inconsistencies in proposed plans.
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Reasoning Chain Optimization

t —
Lreasoning (Ht' Dreasoning) o
1 d expected y) L
|Dt | (Si; Si ) + feedback “feedback
reasoning t
(Si—l»airsi:fi)E]D)reasoning

0 If action a; is valid

a,re If precondition violation detected

L feedback :<
Jeedbac acrr If incorrect effect applied

\_ Qgoq if goal not achieved
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End-Task (Final) Performance Optimization

optimize from the reasoning-improved parameters 8; to enhance overall planning

0t+1 — 9{5 o 52 VHZ: —final(glr' ]D)]L:inal)

{(d;,pj,m{,vf) : V problems j at iteration ¢}

loss function that measures measures how well
the final outputs match the expected answers in
the training data
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End-Task Performance Optimization: 6,1 = 6 — &, Vor Lsina(.)

This objective ensures that
improvements in logical reasoning translate to

practical planning capability of producing accurate plans.
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Empirical Evaluation: Objectives

RQ1: Does logical CoT instruction tuning improve plan validity compared to
standard approaches?

RQ2: How does the quality of feedback (binary vs. detailed) affect planning
performance?

RQ3: How well does the approach generalize across different planning
domains?
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Empirical Evaluation: Dataset and Models

Three Domains:

« Mystery Blocksworld

Blockworld

Logistics

Three Models:

Llama-3-8B
GPT-4
Gemma-3-270M

Benchmark

PlanBench: An Extensible Benchmark for Evaluating
Large Language Models on Planning and Reasoning

about Change
Karthik Valmeekam Matthew Marquez
School of Computing & Al School of Computing & Al
Arizona State University, Tempe. Arizona State University, Tempe.
kvalmeek@asu.edu mmarqu22Q@asu.edu
Alberto Olmo Sarath Sreedharan*
School of Computing & Al Department of Computer Science,
Arizona State University, Tempe. Colorado State University, Fort Collins.
aolmoher@asu.edu sarath.sreedharan@colostate.edu
Subbarao Kambhampati
School of Computing & AT

Arizona State University, Tempe.
rao@asu.edu

Slide 23



Logical CoT instruction tuning improves Plan Validity

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
n=15 n=10 n=15 n=10 n=15
Blocksworld 28% 78% 12% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64 % 69% 72% 18%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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Detailed feedback is better than Binary Feedback

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
n=15 n=10 n=15 n=10 n=15
Blocksworld 28% 78% 72% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 716% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64 % 69% 72% 18%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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PDDLInstruct’s improved performance generalizes across domains

Only P2 PDDL-INSTRUCT
Model Domain Baseline Only P1 Detailed Binary Detailed
n=15 n=10 n=15 n=10 n=15
Blocksworld 28% 78% 72% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 16% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64 % 69% 72% 78%
Blocksworld 7% 12% 19% 37% 39% 54% 56%
Gemma-3 Mystery BW 0% 2% 3% 22% 28% 24% 28%
Logistics 2% 13% 11% 18% 33% 27% 43%
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Limitations

» Optimizing instruction tuning data.

e Fine-grained analysis of planning performance.
e Comparison with SoTA symbolic planners.

» Extending domain coverage.
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A Collaborative Numeric Task Planning Framework
based on Constraint Translations using LLMs
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<>

Formal Automated Planning h ‘
(N (N
Requires:

« programming knowledge. “
« technical expert interventions.
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Improve Planning Accessibility

» Avoid “intuitively bad solutions” and
focus

* Explore specitic strategies in a “Let's try
this and rollback” approach.

» Dynamically refine solutions and iterate
toward more effective outcomes.
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Hybrid Collaborative Planning Framework

-,
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Human User Al System Retrieval

Natural «—>
8 +Ianguage+ %g —
1
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? A Database
. PDDL
Solution + P
+ Visuals ) i =
| ﬁ Automated N
Planner . g
Simulator <€——Plan— 00 O
J <> @.
A symbolic automated An LLM-based system acts as an

planner computes plans interface and for model elicitation




Hybrid Collaborative Planning Framework

-

.
Human User

?

Solution
+ Visuals

Simulator <€——Plan—

Natural «—>
8 “language™ %g

f Al System W

A
PDDL

v

" Automated
Planner

CIX=)

<>
25!

4 A
Information
Retrieval

—_—

B E
B E

Database

Real-time

data

Human can influence problem solving,
without technical expertise requirements
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Main capabilities: Chat, Suggestions, Translation

Problem
description PDDL problem
| | —
4 N Information
5 Natural language
Human interactions Al Ag ent «>»| Retrieval
-
User
B @
Database
8 Rea.lsitil:':ne
data |
k ) . _4

Automated Planner
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Chat Capability

Chat

Get insight on the problem
Summarize problem
Modify existing plans

No PDDL for user

Problem

description

l

Human
User

A

Natural language
interactions

€ Questions
Answers

PDDL problem

l

Al Agent )

{ ™y

Open Dialog l

J

-~

Automated Planner

o0 O

<5

“

Information
Retrieval

>

B®
B B

Database

Real-time
data
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Providing Suggestions Capability

Highlight information,
Make suggestions

Retrieve external
information (RAG) and real-
time APIs.

Can generate real-time
weather constraints,

not modeled in original PDDL
problem

Problem
description

l

Human
User

A

-
(.

Natural language
interactions

Risks +
<

uggestions

PDDL problem
. ! , \
s N\ Information
Al Agent <> | Retrieval
Risk Analysis
— | 1- Extractrelevantinfo | | | Tgom :
2- Generate advice ) Real-time
data
A %

Automated Planner
=)

<
41245
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Translation Capability

Problem
. . ] description PDDL problem
Main contribution: | . l
Planning + Translation l 5 s
p 3 afural Ian_guage Al Ag ent
H u m an interactions
User
Translate human guidance
into planning constraints 8
The updated problem is
_ _ _ Guidance 1- Decomposition <«——>| Verifier
Simulator to visualize plan < Revew/ __| | 2-Encoding
§ ! Clarifying questions \ - = J
1
T A A Updated problem
Simulator *
B, Lo~ ‘{’F Automated Planner
| o ‘ plan N5

Oc. .t )4

e ENHSP: Scala ECAI'16
PDSim: Pellegrin ICAPS 24 NTCORE+: Bonassi AAAI'24




CAl-Alpha Version

Constraints E2NL Suggestions View Planning Weather Help

No constraints

Plans
Previous:
None
Current:
None

Setting: DEFAULT

Planning mode: anytime, TO=15.0

Problem (zenoreal):
- NumericTCORE/benchmark/ZenoTravel-no-constraint/domain_with_n.pddl
- PDDL/zenoreal.pdd|

=== ADDING CONSTRAINT === 1) Human input

Enter your constraint:

Elapsed Time: 0.0 s Confirm Translate  Risk Analysis Chat Plan



CAl - Alpha Version

Constraints E2NL Suggestions View Planning Weather Help

RO - Only use planel
D1- Plane2 cannot board any passengers -
D2- Plane2 cannot debark any passengers 2) Add&d
D3- Plane2 cannot fly slow between any cities Constraints hahe
D4- Plane2 cannot fly fast between any cities
D5- Plane2 cannot refuel
D6- Plane3 cannot board any passengers
D7- Plane3 cannot debark any passengers
D8- Plane3 cannot fly slow between any cities

Plans

Current:

None

D9- Plane3 cannot fly fast between any cities
D10- Plane3 cannot refuel

- Plane3 cannot fly slow between aﬁy cities
- Plane3 cannot fly fast between any cities
- Plane3 cannot refuel

Are you satisfied with the decomposition? If not, provide any desired feedback or type 'explain’.
User: yes

Encoding ...

Elapsed Time: 0.0 s Confirm Translate  Risk Analysis Chat Plan



CAl - Alpha Version

Constraints E2NL Suggestions View Planning Weather Help

RO - Only use planel Plans
D1- Plane2 cannot board any passengers :
Previous:
D2- Plane2 cannot debark any passengers
D3- Plane2 cannot fly slow between any cities hiorie
D4- Plane2 cannot fly fast between any cities
D5- Plane2 cannot refuel Curront:

D6- Plane3 cannot board any passengers

D7- Plane3 cannot debark any passengers
D8- Plane3 cannot fly slow between any cities
D9- Plane3 cannot fly fast between any cities

Plan-Length: 48

Metric: 15536.0

Planning time: 15.06

Found Plan:

0.0: (refuel_planel)

1.0: (board_persond4 _planel boston)
D10- Plane3 cannot refuel 2.0: (flyfast_planel_boston_washington)
3.0: (board_person2_planel_washington)
4.0: (board_person8 planel washington)
5.0: (flyslow_planel washington_boston)
- PDDL/zenoreal.pddl 6.0: (refuel_planel)

7.0: (flyslow_plane2_ washington_washington)
8.0: (flyslow_planel_boston_dallas)

9.0: (board_person9_planel_dallas)
10.0: (flyfast_planel_dallas_seattle)
=== PLANNING === 11.0: (debark_person9_planel_seattle)
12.0: (refuel_planel)

i 13.0: (flyslow_planel_seattle_denver)
Complhng .- OK [1'SZS] 14.0: (debark_person4_planel_denver)

Plannmg (anytlme, TO=15.0S) ... OK [15-0631 15.0: (flyslow_planel denver washington)
16.0: (refuel_planel)
17.0: (flyslow_planel washington_seattle)
18.0: (flyslow_planel_seattle_dallas)

Constraints loaded

Elapsed Time: 16.5 s Confirm Translate  Risk Analysis Chat Plan



CAl - Alpha Version =

Constraints E2NL Suggestions View Planning Weather Help

Canada

Plan Actions 4) Simulation

refuel (plane1)

flyslow (plane1, boston, denvel
flyfast (plane1, denver, washin
refuel (planel)

board (person8, plane1, washir
flyslow (plane1, washington, de
debark (person8, plane1, denve

flyslow (planel, denver, bostor

board (person4, planel, bostor ¥

Mexico

flyslow
located(planeil, denver)

Plan Panel Action Tab Speed Controls Object Info Panel Camera Controls

Elapsed Time: 16.5 s Confirm Translate  Risk Analysis Chat




Guidance Translation

[ Translate user inputs as guidance for the solver }

Two-step process:

Refme
4 >> m> )
- inputs

Automated
User Translation Solver

41



Evaluation of translation quality: Ablation Study

[4 Settings to evaluate our translation pipeline: J

ECODING: LLM alone
+ VERIFIER: Symbolic syntax checker
+ DECOMP: Constraint decomposition

+ HUMAN: Human interventions on decomposition

42



Evaluation of translation quality: Ablation Study

: Translation Human
Setting . 2
Parsable Correct Time (s) HIETVentons
Encoding 26 19 29.3=+12.3 0
+ Verifier 30 20 35.8413.5 0
+ Decomposition
+ Human

Table 1: Ablation study reporting syntax and semantic accu-
racy (N = 30)

-
Correct Syntax

e LLM alone makes syntax mistakes

k. Symbolic verifier feedback fixes syntax mistakes

)

Model:
Claude Sonnet 4
(thinking enabled)

43



Evaluation of translation quality: Ablation Study

- Translation Human
Setting interventions
Parsable Correct Time (s)
Encoding 26 EOEN29.3 + 12.3 0
+ Verifier 30 2RI 35.8 += 13.5
+ Decomposition 30 20 155.0 £ 26.2 0
+ Human 30 2S1.9 4 53.7 12

Table 1: Ablation study reporting syntax and semantic accu-

racy (N = 30)

Satisfying semantic accuracy
e Decomposition no direct effect
e But allows for human review
e Human intervention significantly improves correctness

Model:
Claude Sonnet 4
(thinking enabled)
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Evaluation of translation quality: Ablation Study

: Translation Human
Setting . 2
Parsable Correct Time (s) MIELVEN oS
Encoding 26 19 29.3=+12.3 0
+ Verifier 30 200 39.8<+13.5 0
+ Decomposition 30 20 5H5.0+ 26.2 0
+ Human 30 27 181.9 4+ 53.7 12

Table 1: Ablation study reporting syntax and semantic accu-
racy (N = 30)

Model:
Claude Sonnet 4
(thinking enabled)

Seems faster than human experts
e Ours ~82s (SD=53.7) vs. Prior work 180s (SD=78)
e But comparison maybe unfair

o similar but not identical constraints




Hybrid collaborative planning framework
(neuro-symbolic)

=

- p 's -
Information
Human User Al System Retrieval

Natural
A [T & T g
A

"|

T Database
. PDDL
Solution *
+ Visuals ) W ¢ : H
Automated “data
Planner \
Simulator <«——Plan— %0 &
<1
_.20

Creates a collaborative, mixed-initiative planning scheme where the human
can influence problem solving, without technical expertise requirements
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