
SMART ANALYZER

Major Project

Submitted towards partial fulfillment of the
Degree of Bachelor of Engineering

Year 2010

Department Of Information Technology

Guided By: Submitted By:
Mr. Anand S. Rajawat
Mr. Anurag Golwelkar

Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

(0802IT071020)
(0802IT071037)
(0802IT071047)
(0802IT071058)

Shri Vaishnav Institute of Technology and Science, Indore

Shri Vaishnav Institute of Technology and Science, Indore

Certificate

This is to Certify that Mr. Apoorv Shrivastava, Ms.Minakshi Gupta, Mr.Pulkit
Verma and Mr. Udayan Gupta working in a Group have satisfactorily completed
the major project titled “Smart Analyzer” towards the partial fulfillment of the

degree in Bachelor of Engineering (Information Technology) Awarded by Rajiv
Gandhi Technical University, Bhopal for the academic year 2010.

 Head of Department

 Date:

Internal Examiner External Examiner

Date: Date:

ACKNOWLEDGEMENT

“We follow your foot-steps, we move on the path shown by you, we acknowledge
you, and we are proud to have guides like you.”

We feel it our proud privilege to express our deep sense of gratitude and
indebtedness to Dr. Ashish Bansal (Head of Department), Mr. Anand Rajavat
(Project Incharge), Mr. Anand S. Rajawat and Mr. Anurag Golwelkar (Project
Guides), Mr. Rajesh Chakrawati, Ms. Shweta Pandey and Mr. Vijay Prakash
(Project Coordinators) for providing their painstaking and untiring supervision. We
own our deep sense of gratitude and thanks for their constructive criticism,
valuable suggestions and constant encouragement at all stages of development of
this project.

We wish to express our sincere thanks to all the faculty of Information Technology
Department, for providing a conductive environment for proper development of
project and the necessary facilities for completion of project.

We also express our sincere thanks and gratitude to all of them without whose
constant support and guidance, this project would not have been a success.
Last but not the least we owe sincere thanks to Dr. Rajeev G. Vishwakarma for
mentoring projects at Centre of Excellence at SVITS.

Apoorv Shrivastava

Minakshi Gupta

 Pulkit Verma

Udayan Gupta

Smart Analyzer Date: 30/11/2010

 IT 4th Year, Group-06 Page 1

Table of Contents

1. Problem Definition 2

2. Vision 7

3. Glossary 18

4. Requirements Management Plan 27

5. Software Requirement 40

6. Software Requirements Specification 48

7. Stakeholders Request 60

8. Story Board 70

9. Supplementary Specifications 74

10. Use Case Model 83

11. Iteration Plan 106

12. Software Architecture Document 117

13. Risk List 129

14. Analysis Classes 138

15. Analysis Model 143

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 2

Smart Analyzer

Problem Definition

Version 1.0

Smart Analyzer Version: 1.0
Problem Definition Date: 30/11/2010

 IT 4th Year, Group-06 Page 3

Revision History

Date Version Description Author

04/10/2010 1.0 Problem Definition of the
project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.0
Problem Definition Date: 30/11/2010

 IT 4th Year, Group-06 Page 4

Table of Contents

1. Problem Definition 5

Smart Analyzer Version: 1.0
Problem Definition Date: 30/11/2010

 IT 4th Year, Group-06 Page 5

1. Problem Definition

The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the proxy server
like SQUID on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

The major problems with the existing system are:

1. The systems do not provide the graphical analysis tools for easy understandability.

2. The systems initiate processes that consume large number of resources hence put an
additional load on the server.

3. Various formats of information in log files are difficult to analyze and understand.

There is not any simplified server monitor tool used on many proxy servers. Other solutions
include manual analysis in which a user has to analyze the log file manually which is tedious and
cumbersome job. Access Log Analysis in manual way is highly complex and doesn’t provide the

fast analysis. Smarter Log Analyzer provides a simple and reliable way of analyzing the log files.

The existing systems are very hard to handle as they use manual analysis in which a user has to
analyze the log file manually which is tedious and cumbersome job. Access Log Analysis in
manual way is highly complex and doesn’t provide the fast analysis. The Access Log Analyzer
provides a simple and reliable way of analyzing the log files.

In our proposed system we overcome the problem of readability of log files by providing the
various commonly used formats of respective data items. Also the graphical analysis facility for
various dynamically changing parameters like the URL being accessed presently and the number
of times a page or a website is accessed.

The problem of unreadability of log file is solved by designing a graphical user interface which
is easy to handle and operate. As the system is fully automated only one user that is proxy server
administrator can complete the task of analysing the logs on proxy server. The time spent for
each activity is constant for all users.

Smarter Log Analyzer for Proxy Server can be implemented successfully in the commercial
market. We intend to overcome the problems of intractability by producing a spreadsheet type
system that the user can guide in an informed and useful way. The new project will raise the
level of managing computer and will develop a revolution in the same field.

Smart Analyzer Version: 1.0
Problem Definition Date: 30/11/2010

 IT 4th Year, Group-06 Page 6

As the system is fully automated only one user that is proxy server administrator can complete
the task of analysing the logs on proxy server. The time spent for each activity is constant for all
users. The system is implemented using Java which is platform independent, so application can
run on all platforms.

The system is implemented using Java which is platform independent, so application can run on
all platforms. As the application can be accessed directly by proxy server administrator, no
hardware budget is required. The only cost will be the cost of implementing and maintaining
the system.

The system is to be made so as to support minimal resources for the GUI and still provide basic
functionalities to monitor the server.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 7

Smart Analyzer

Vision

Version 1.1

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 8

Revision History

Date Version Description Author

04/10/2010 1.0 Vision of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Vision of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 9

Table of Contents

1. Introduction 11

1.1 Purpose 11
1.2 Scope 11
1.3 References 11

2. Positioning 11

2.1 Business Opportunity 11
2.2 Problem Statement 12
2.3 Product Position Statement 12

3. Stakeholder and User Descriptions 12

3.1 Market Demographics 12
3.2 Stakeholder Summary 12
3.3 User Summary 13
3.4 User Environment 13
3.5 Key Stakeholder or User Needs 13
3.6 Alternatives and Competition 13

4. Product Overview 13

4.1 Product Perspective 13
4.2 Summary of Capabilities 14
4.3 Assumptions and Dependencies 14
4.4 Cost and Pricing 14
4.5 Licensing and Installation 14

5. Product Features 14

5.1 Logon 14
5.2 Command Execution 15

6. Constraints 15

7. Quality Ranges 15

8. Precedence and Priority 15

9. Other Product Requirements 15

9.1 Applicable Standards 15
9.2 System Requirements 16
9.3 Performance Requirements 16
9.4 Environmental Requirements 16

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 10

10. Documentation Requirements 16

10.1 User Manual 16
10.2 Online Help 16
10.3 Installation Guides, Configuration, and Read Me File 16
10.4 Labeling and Packaging 17

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 11

1. Introduction

1.1 Purpose
The purpose of this document is to present an access log analyzer for proxy server. It will explain
the purpose and features of the system, the interfaces of the system, what the system will do, the
constraints under which it must operate and how the system will react to external stimuli. This
document is intended for both the mentors and the developers of the system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 References
Applicable references are:

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A,Intraha W,
ISBN 0-7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)
 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

2. Positioning

2.1 Business Opportunity
Access Analyzer for Proxy Server can be implemented successfully in the commercial market.
We intend to overcome the problems of intractability by producing a spreadsheet type system
that the user can guide in an informed and useful way. The new project will raise the level of
managing computer and will develop a revolution in the same field.

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 12

2.2 Problem Statement

The problem of Analyzing a access file on a proxy server is very difficult
task due to complexity of the format of log file

Affects Server Administrator

the impact of which is It results in the waste of time.

a successful solution would be This problem can be overcome through a system which
provides a simple view of the data in the log file.

2.3 Product Position Statement

For Systems where proxy server is used as a gateway to access
other networks (like Internet).

Who Effective way of analyzing logs on proxy server

The (product name) is a Software

That Enables server administrator to easily analyze the traffic on
proxy server.

Unlike The existing system for reading log files manually.

3. Stakeholder and User Descriptions
There is only one user to this system known as Server Administrator.

3.1 Market Demographics
The Software can be easily installed onto the system and user can very easily handle it. The
initial release of this system will be limited to Administrator on a single server.

3.2 Stakeholder Summary

Name Description Responsibilities

Project Guide CSE Department and SVITS
college as a whole

Responsible for project funding approval.
Monitors project progress

Customer Proxy Server Administrator Ensures that the system will meet the
needs of the server administrator.

System Designers Other stakeholders include
system designers who design
& look the entire system

The responsibility of the system designers
is to develop a system which is easily
maintainable, secure and error free to
increase the market demand of the
product.

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 13

3.3 User Summary

Name Description Responsibilities

Proxy Server
Administrator

Acts as administrator
and is main user of
the system

Responsible for analyzing the traffic on the
server.

System Designers Other stakeholders
include system
designers who design
& look the entire
system

The responsibility of the system designers is
to develop a system which is easily
maintainable, secure and error free to
increase the market demand of the product.

3.4 User Environment
As the system is fully automated only one user that is proxy server administrator can complete
the task of analysing the logs on proxy server. The time spent for each activity is constant for all
users. The system is implemented using Java which is platform independent, so application can
run on all platforms.

3.5 Key Stakeholder or User Needs
There is not any simplified server monitor tool used on many proxy servers. Other solutions
include manual analysis in which a user has to analyze the log file manually which is tedious and
cumbersome job. Access Log Analysis in manual way is highly complex and doesn’t provide the

fast analysis. The Access Log Analyzer provides a simple and reliable way of analyzing the log
files.

3.6 Alternatives and Competition
The system is developed in its generalized form for any Proxy Server. Other alternatives
available provide manual way of analyzing log file which is useful on proxy server where the
traffic is very low and the number of nodes handled by it is less.

4. Product Overview
This section provides a high level view of the structure of exam scheduling system.

4.1 Product Perspective
The access log analyzer will act as an interface for analyzing the logs and generate graphs for
various parameters.

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 14

4.2 Assumptions and Dependencies
The following assumptions and dependencies relate to the capabilities of the exam scheduling
system as outlined in this Vision Document:

 The user must be fluent with English.
 He must know the working of the system.
 The system is using existing college database.

4.3 Summary of capabilities:

Customer Benefit Supporting Features

Reduced total time Proxy Server Administrator can analyze the logs in
many effective ways cutting the effective time.

Customer satisfaction is improved Graphical Analysis is implemented successfully.

4.4 Cost and Pricing
As the application can be accessed directly by proxy server administrator, no hardware budget is
required. The only cost will be the cost of implementing and maintaining the system.

4.5 Licensing and Installation
There are no licensing requirements for system, as it will be available only to any University.

Installation of the client component must be available via diskette, CD, or downloadable from
the Internet.

5. Product Features

5.1 Hardware requirements:

 Pentium IV, 750 MHz, 20GB HDD

 RAM: 64MB minimum

 400MB Minimum Free Space on Drive

 One Server machine with Tomcat container

 Other Server with MySql

 A Color Monitor, a Keyboard and a Mouse (optionally).

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 15

5.2 Software requirements:

 Operating System: Linux OS.

 Apache Tomcat container

 MySql

 JDK 1.4 or above

6. Constraints
 It must be designed specifically for single user.

 Efficiency of the system depends on the algorithm used for analysis.

7. Quality Ranges
This section defines the quality ranges for performance, robustness, fault tolerance, usability, and
similar characteristics for the exam scheduling system

Availability: The System shall be available 24 hours a day, 7 days a week.

Usability: The System shall be easy-to-use. The System shall include online help for the user.
Users should not require the use of a hardcopy Manual to use the System.

Maintainability: The System shall be designed for ease of maintenance

8. Precedence and Priority
This section provides some direction on the relative importance of the proposed system features.
The features defined in this Vision Document should be included in the first 2 releases of the
system. As development progresses on this system, the feature attributes will be used to weight
the relative importance of the features and to plan the release content. The benefit, effort, and
risk attributes are used to determine priority of a feature and target release.

9. Other Product Requirements

9.1 Applicable Standards
The desktop user-interface shall be GNOME compliant.

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 16

9.2 System Requirements

 The client component of the system shall operate on any personal computer with a
486 Microprocessor or better.

 The client component of the system shall not require more than 32 MB RAM and 20
MB Disk Space.

 The client component of the system shall run on any flavor of Linux Operating
System with SQUID Server running on it.

9.3 Performance Requirements
The system shall initiate the execution of 85% of the desired tasks specified within 10 seconds.

9.4 Environmental Requirements
None

10. Documentation Requirements

10.1 User Manual
The User Manual shall describe use of the System from the operator’s view point. The User

Manual shall include:
 Minimum System Requirements
 Installation of the system
 Logging On
 Logging Off
 All System Features
 Customer Support Information

10.2 Online Help
Online Help shall be available to the user for each system function. Each topic covered in the
User Manual shall also be available through the online help.

10.3 Installation Guides, Configuration, and Read Me File
The installation for exam scheduling includes the following things-

 Minimum Hardware Requirements
 Installation Instructions
 User Specific Parameters
 Customer Support Information
 How to Order Upgrades

Smart Analyzer Version: 1.1
Vision Date: 30/11/2010

 IT 4th Year, Group-06 Page 17

The Read Me File shall be available for display following installation. The Read Me File will
also reside on disk and be available for viewing at any time by the user. The Read Me File shall
include:

 New release features
 Known bugs and workarounds.

10.4 Labeling and Packaging
The SVITS College logo shall be prominent on the user documentation and splash screens.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 18

Smart Analyzer

Glossary

Version 1.1

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 19

Revision History

Date Version Description Author

04/10/2010 1.0 Glossary of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Glossary of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 20

Table of Contents

1. Introduction 21

1.1 Purpose 21
1.2 Scope 21
1.3 References 21
1.4 Overview 21

2. Definitions 22

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 21

1. Introduction
1.1 Purpose

The purpose of this document is to present glossary for an access log analyzer for proxy server.
The glossary contains the working definitions for terms and classes in the access analyzer for
proxy server. This glossary will be expanded throughout the life of the project.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.4 Overview
This document will contain the following sections:

 Definitions

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 22

2. Definitions

Term Description Additional Information

Access Logs The access logs are a valuable source of
information about Squid workloads and
performance. The logs record not only access
information, but also system configuration
errors and resource consumption.

Access logs in Squid
server are stored in a file
named “access.log” in

/var/log/squid directory.

Activity Graph A special case of a state machine that is used
to model processes involving one or
more classifiers.

Actor (class)

Defines a set of actor instances, in which each
actor instance plays the same role in relation to
the system.

A coherent set of roles
that users of use cases
play when interacting
with these use cases. An
actor has one role for
each use case with which
it communicates.

Actor (instance) Someone or something, outside the system that
interacts with the system.

Analysis The part of the software development process
whose primary purpose is to formulate a model
of the problem domain.

Analysis focuses on what
to do;design focuses on
how to do it.

Analyzer An analyzer is a person or device that analyses
given data. It examines in detail
the structure of the given data and tries to
find patterns and relationships between parts of
the data.

API Application Programming Interface. A
software interface that enables applications to
communicate with each other. An API is the
set of programming language constructs or
statements that can be coded in an application
program to obtain the specific functions and
services provided by an underlying operating
system or service program.

Artifact A physical piece of information that is used or
produced by a software development process.
An artifact may constitute the implementation
of a deployable component.

Examples of Artifacts
include models, source
files, scripts, and binary
executable files.

Cache Log The Cache Log file contains the debug and
error messages that Squid generates.

Cache Logs are stored in
a file named “cache.log”

in /var/log/squid
directory.

Change The activity of controlling and tracking

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 23

Management changes to artifacts.
Change Request
(CR)

A general term for any request from
a stakeholder to change an artifact or process.
Documented in the Change Request is
information on the origin and impact of the
current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relations
hips, and semantics.

A class may use a set of
interfaces to specify
collections of operations
it provides to its
environment.

Class Diagram A diagram that shows a collection of
declarative (static) model elements, such
as classes, types, and their contents
and relationships.

Class Hierarchy The relationships among classes that share a
single inheritance.

Collaboration
Diagram

A collaboration diagram describes a pattern of
interaction among objects; it shows the objects
participating in the interaction by their links to
each other and the messagesthey send to each
other.

It is a class diagram that
contains classifier roles
and association roles
rather than just classifiers
and associations.

Component A non-trivial, nearly independent, and
replaceable part of a system that fulfils a clear
function in the context of a well-
defined architecture.

Deployment A discipline in the software-engineering
process, whose purpose is to ensure a
successful transition of the developed system
to its users.

Included are artifacts
such as training materials
and installation
procedures.

Deployment
Diagram

A diagram that shows the configuration of run-
time processing nodes and
the components, processes , and objects that
live on them. Components represent run-time
manifestations of code units.

Deployment
Environment

A specific instance of a configuration of
hardware and software established for the
purpose of installing and running the
developed software for its intended use.

Deployment Unit A set of objects or components that are
allocated to a process or a processor as a
group. A distribution unit can be represented
by a run-time composite or an aggregate.

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 24

Deployment View An architectural view that describes one or
several system configurations; the mapping of
software components (tasks, modules) to the
computing nodes in these configurations.

Design The part of the software development process
whose primary purpose is to decide how the
system will be implemented. During design,
strategic and tactical decisions are made to
meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization
of use cases ; serves as an abstraction of
the implementation model and its source code.

Design Pattern A design pattern provides a scheme for
refining the subsystems or components of a
software system, or the relationships between
them. It describes a commonly-recurring
structure of communicating components that
solves a general design problem within a
particular context.

Fault-based
Testing

A technique for testing computer software
using a test method and test data to
demonstrate the absence or existence of a set
of pre-defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to
communicate with a program by manipulating
graphical features, rather than by entering
commands.

IP Address An Internet Protocol address (IP address) is a
numerical label that is assigned to any device
participating in a computer network that uses
the Internet Protocol for communication
between its nodes.

IP Address is unique for
any device on a network.

Linux Linux refers to the family of Unix-
like computer operating systems using
the Linux kernel.

Linux OS is available as
various distros like
Ubuntu, Fedora, Red Hat,
Suse, etc.

Object Oriented
Programming

A programming approach based on the
concepts of data abstraction and inheritance.
Unlike procedural programming techniques,
object-oriented programming concentrates on
those data objects that constitute the problem
and how they are manipulated, not on how
something is accomplished.

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 25

Prototype A release that is not necessarily subject
to change management and configuration
control.

Proxy Server A proxy server is a server that acts as an
intermediary for requests from clients seeking
resources from other servers.

This allows a number of
systems to connect to the
internet via a single IP
address.

Quality Assurance All those planned and systematic actions
necessary to provide adequate confidence that
a product or service will satisfy given
requirements for quality.

Scenario A specific sequence of actions that illustrates
behaviours. A scenario may be used to
illustrate an interaction or the execution of one
or more use-case instances.

Server A server is a computer, or series of computers,
that link other computers or electronic devices
together. They often provide essential services
across a network, either to private users inside
a large organization or to public users via
the internet.

A server program is
simply a program that
operates as
a socket listener.

Stakeholder An individual who is who is materially
affected by the outcome of the system.

State Machine A state machine specifies the behavior of
a model element, defining its response to
events and the life cycle of the object.

Store Log The Store Log file covers the objects currently
kept on disk or removed ones. As a kind of
transaction log it is usually used for debugging
purposes.

Store Logs are stored in a
file named “store.log” in

/var/log/squid directory.

Squid Squid is a proxy server and web
cache daemon. It has a wide variety of uses,
from speeding up a web server by caching
repeated requests; to caching web, DNS and
other computer network lookups for a group of
people sharing network resources; to aiding
security by filtering traffic.

Squid includes limited
support for
several protocols includin
g HTTP, FTP,
TLS, SSL, Internet
Gopher and HTTPS.

Unicode A character coding system designed to support
the interchange, processing, and display of the
written texts of the diverse languages of the
modern world.

Unicode characters are
typically encoded using
16-bit integral unsigned
numbers.

UML Abbreviation of Unified Modeling Language, a
language for visualizing, specifying,
constructing, and documenting the artifacts of
a software-intensive system

Smart Analyzer Version: 1.1
Glossary Date: 30/11/2010

 IT 4th Year, Group-06 Page 26

URL Abbreviation of Uniform Resource Locator,
the global address of documents and other
resources on the World Wide Web.

Use Case A description of system behavior, in terms of
sequences of actions. A use case should yield
an observable result of value to an actor.

A use case defines a set
of use-case
instances or scenarios.

Use Case Diagram A diagram that shows the relationships
among actors and use cases within a system.

Use Case Instance The performance of a sequence of actions
being specified in a use case. An instance of a
use case.

Use Case Model A model that describes a system's
functional requirements in terms of use cases.

Use Case Package A use-case package is a collection of use cases,
actors, relationships, diagrams, and other
packages; it is used to structure the use-case
model by dividing it into smaller parts.

Use Case
Realization

A use-case realization describes how a
particular use case is realized within the design
model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an
artifact typically expand on earlier versions.

Workspace The work area that contains all the code you
are currently working on; that is, current
editions.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 27

Smart Analyzer

Requirements Management Plan

Version 1.1

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 28

Revision History

Date Version Description Author

04/10/2010 1.0 Requirements Management Plan
of the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Requirements Management Plan
of the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 29

Table of Contents

1. Overview 30

1.1 Purpose 30
1.2 Scope 30
1.3 Definitions, Acronyms and Abbreviations 32
1.4 References 35
1.5 Overview 35

2 Requirements Management 35

2.1 Organization Overview 35
2.2 Tools 36

3 Levels of Requirements Management 36

3.1 Level One - Written 36
3.2 Level Two - Organized 36
3.3 Level Three - Structured 37
3.4 Level Four - Traced 38
3.5 Level Five - Integrated 38

4 Requirements Documentation and Organization 38

4.1 Applicability 38
4.2 Document Organization 39
4.3 Applicable Documents 39
4.4 Changes and Revisions 39
4.5 Issues 39

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 30

1. Overview

1.1 Purpose
The purpose of this document is to establish a common understanding of technical and non-
technical requirements of the system that will be addressed throughout the lifecycle of this
project. The goals of requirements management are to ensure that requirements are controlled to
establish a baseline for development, acquisition, or management; and to ensure plans, work
products, and activities are consistent with the requirements.

1.2 Scope

 Simplified view of the access logs on Squid server is provided.
 Dynamic view of various URLs being accessed from various IPs connected via proxy

server.
 Graphical view of URLs being accessed versus following parameters is provided:

o Time window during which URL is accessed.
o Number of times URL is accessed.

 Break-up of the analysis on the basis of IP from which URL was accessed.
 Bandwidth used by each system can be viewed.
 Break-up analysis on the basis of domain of website.
 Analyze the processing time taken by proxy server to service a particular system.
 Analyze the complete user traffic of a system.

Detailed analysis of scope:

What shall be done? Simplified view of the access logs on Squid server is provided.

How shall it be done? By providing a Graphical User Interface using simplified values
for values like access time, etc.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

What shall be done? Dynamic view of various URLs being accessed from various
IPs connected via proxy server.

How shall it be done? By accessing the log file and updating the database simultaneously
in real time, from which analysis is done.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on back-end development (database
management).

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 31

What shall be done? Graphical view of URLs being accessed versus various given
parameters.

How shall it be done? By using APIs for providing dynamic image in Java Servlets.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on back-end development.

What shall be done? Break-up of the analysis on the basis of IP from which URL

was accessed.
How shall it be done? By providing a Graphical User Interface to read entries for host

(domain name or IP Address).
When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

What shall be done? Bandwidth used by each system can be viewed.

How shall it be done? By providing a Graphical User Interface to show bandwidth usage
by each user.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

What shall be done? Break-up analysis on the basis of domain of website.

How shall it be done? By providing a Graphical User Interface to show the domain-wise
analysis.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

What shall be done? Analyze the processing time taken by proxy server to service a

particular system.
How shall it be done? By providing a Graphical User Interface to show processing time

of each system.
When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 32

What shall be done? Analyze the complete user traffic of a system.

How shall it be done? By providing a Graphical User Interface to show the user-traffic
analysis.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.
Change Request (CR) A general term for any request from a stakeholder to change an artifact

or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 33

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Prototype A release that is not necessarily subject to change management
and configuration control.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 34

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support the interchange,

processing, and display of the written texts of the diverse languages of
the modern world.

UML Abbreviation of Unified Modeling Language, a language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 35

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-
7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)
 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
Requirements Management Plan will contain 3 sections:

 Requirements Management.
 Levels of Requirements Management.
 Requirements Documentation and Organization.

2. Requirements Management

2.1 Organization Overview
ROLE NAME ORGANIZATION

Project Incharge Anand Rajavat CSE Department, SVITS
Project Guide Anand S. Rajawat CSE Department, SVITS
Project Co-guide Anurag Golwelkar CSE Department, SVITS
Project Developer Apoorv Shrivastava Student, IT 4th Year, SVITS
Project Developer Minakshi Gupta Student, IT 4th Year, SVITS
Project Developer Pulkit Verma Student, IT 4th Year, SVITS
Project Developer Udayan Gupta Student, IT 4th Year, SVITS

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 36

2.2 Tools
Software tools to be used in fulfilling the Requirements Management functions throughout the
project.

 Rational Rose.
 Rational Software Architect.
 Rational Requirements Composer.

3. Levels of Requirement Management
The five levels of maturity for our RMM are:

1) Written
2) Organized
3) Structured
4) Traced, and
5) Integrated.

Actually, there is one other level on the requirements maturity scale: Level Zero - no
requirements.
At Level Zero, they make broad assumptions that they know what to build; and the time in which
the software can be build. Sometimes this gamble works, but more often than not, a product is
released that is missing functionality, has functions that are not needed, or is of poor quality.

3.1 Level One - Written
The first step up is simply to write the requirements. Once you write requirements, several
benefits become obvious. First, you have a real basis for a contract with your customer. If you
write them well, the requirements can clearly state your understanding of what the customer
wants you to build, and they can read the requirements and agree (or disagree). Second, everyone
on your development team has a basis for doing his or her work. Third, as you staff up the
project, new members, too, will have a source for figuring out what the application or system is
supposed to do. Our project meets this level as we have written all the requirements in a well-
organized manner which states all the objectives clearly. The customer is agreed with all
requirements. Also, it helped us a lot while assigning the tasks to the members of the team based
on the different objectives classified. Everyone on our development team has a basis for doing
his or her work.

3.2 Level Two - Organized
At this level an organization deals with things like the quality of the requirements, their format,
their security, where they are stored, and how to keep track of different versions. The goal of a
requirement is to clearly communicate the proposed behavior of the software to a diverse set of
constituents: users, customers and other stakeholders, as well as the development team. A good
set of requirements does this job well; a bad one does not. Good requirements are understandable
by stakeholders who specify them.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 37

 Formatting
Requirements must also be formatted effectively. Consistent numbering schemes, headers,
fonts, and a good table of contents make your documents easier to read, understand, and use.
We have used better fonts, headers and classified all the req. uniquely & effectively.

 Accessibility, Security, and Version Control
At Level Two, you need a central, well known location for the requirements, one that is
accessible by the server administrator. Limiting the ability to modify requirements to
authorized persons only can help ensure the requirements' integrity. Costs associated with
getting to Level Two relate mostly to training and review.

In our project we have given authentication levels to the administrator. When your requirements
are more readable and easier to understand (and more trustworthy), you will have a better basis
for a contract with the customer, the development team will find the requirements easier to use,
and new staff will be able to come up to speed more quickly. Writing quality requirements is not
a simple task. Getting to, and staying at, a given maturity level will require consistent review of
requirements documents and some level of "process enforcement".

3.3 Level Three - Structured
Getting to Level Three involves being more specific about the "types" of requirements you
gather. Are they functional or nonfunctional? Making these distinctions helps you get a better
understanding of the requirements and manage them better.

 Getting Your Types Straight
The first issue arises if you do not distinguish among different types of requirements. If your
current requirements specification simply contains a big list of requirements with no
indication of their type, it is likely that the list contains a mix of different types.

 Attributes
All requirements are not created equal: Some are more important than others; some are more
stable than others. These are important things to keep track of, and adding attributes for
requirements can help you do so. Attributes include information that supplements the
requirement text and helps you better understand and manage your requirements. Benefits of
getting to Level Three revolve around better understanding and easier management.

In our project we have used well-structured requirements clearly identify different requirement
types, and attributes provide the ability to query and filter groups of requirements. Better typing
of requirements also provides greater assurance that the team has identified all important
requirements. The main cost of getting to Level Three is in planning and maintenance.
Determining appropriate requirement types and attributes is not a trivial task.

Usually this information is captured in a Requirements Management Plan (RMP). Then,
requirements attributes are of little use if they are not kept up-to-date, so there is a maintenance
burden that goes beyond the one for Level Two. There is an increased cost too, because
determining the correct attribute values takes time.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 38

3.4 Level Four - Traced
Most systems of any significant complexity will have a hierarchy of requirements. In a systems
engineering environment, this hierarchy starts with system requirements and moves down to
subsystem requirements, program requirements, and element requirements. In the Rational
Unified Process, the hierarchy starts with user needs, proceeds to features, and then goes on to
use cases. The ability to keep track of these relationships is commonly called traceability, and it
entails identifying and documenting the derivation path (upward) and allocation/ flow down path
(downward) of requirements in the hierarchy. Traceability provides the ability to understand how
changes to one requirement might affect others (impact analysis) and can also help determine if
your requirements are complete (coverage analysis). Usually, an organization at Level Four will
develop an explicit traceability strategy prior to starting a project and then document it in the
requirements management plan. The strategy will define the requirements levels and how they fit
in the hierarchy. In addition, it will lay down some "rules" for requirements relationships.

3.5 Level Five - Integrated
It is often the case that requirements are used up front to get agreement from the customer on
what the software is supposed to do, but then those requirements are not really tied in to the way
the software is developed. This results in stale requirements and software that doesn't meet its
objectives. Reaching Level Five means integrating the requirements management process with
the rest of your software development environment. Software that does what the customer
expects is built to comply with the requirements -- that is, the team's software development
process uses the requirements as a key input. Integrating requirements into your change
management process helps ensure that no changes are made to requirements without review and
approval. A comprehensive, requirements-based software development process as described
here takes significant planning, training, and process enforcement.

 Requirements Management Tool Support
Until Level Five, it is theoretically possible to do everything that we have talked about either
"manually" or with general-purpose tools like a word processor and spreadsheet. However,
starting at Level Two, an RM tool can help you be far more efficient and consistent. Table 1
shows how the important features of Rational RequisitePro support key characteristics of the
five RM maturity levels.

4. Requirements Documentation and Organization
4.1 Applicability
The access analyzer is designed and developed for the use by the administrator of the proxy
server. It will make the analysis of the proxy server easier and hence will make the management
tasks easier for the administrator done on the basis of this analysis.

Smart Analyzer Version: 1.1
Requirements Management Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 39

4.2 Document Organization
The document will aim at developing the management plan for managing the resources needed
for fulfilling the requirements of the project, that is, Access Analyzer for Proxy Server.
The document will contain the structure of the team and who will perform which task during the
complete lifecycle of the project.

4.3 Applicable Documents
The documents that will control the requirement management plan contents are:

 Software Requirement Specification.
 Storyboard.
 Stakeholders Request Document.
 Use Case Requirements.

4.4 Changes and Revisions
Since the project is developed by a team formed as per the Democratic Decentralized Model so
the whole team is responsible for controlling the changes in the requirement management plan
and related information.

4.5 Issues
The issues that that affect implementation of the requirements management plan are as follows:
Training:

 Java will be used for developing the project as all team members are trained to use it.
Tools:

 Netbeans IDE will be used as the development tool due to its familiarity with all the team
members.

 Since all the team members are trained to use MySql as the database server, so it will be
implemented in the back-end development.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 40

Smart Analyzer

Software Requirements

Version 1.1

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 41

Revision History

Date Version Description Author

04/10/2010 1.0 Software Requirements of the
project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Software Requirements of the
project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 42

Table of Contents

1. Introduction 43

1.1 Purpose 43
1.2 Scope 43
1.3 Definitions, Acronyms and Abbreviations 43
1.4 References 46
1.5 Overview 46

2. Software Requirements 47

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 43

1. Introduction
1.1 Purpose

The purpose of this document is to present software requirement for an access log analyzer for
proxy server. The glossary contains the working definitions for terms and classes in the access
analyzer for proxy server. This glossary will be expanded throughout the life of the project.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 44

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 45

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 46

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
This document will contain the following sections:

 Software Requirements

Smart Analyzer Version: 1.1
Software Requirements Date: 30/11/2010

 IT 4th Year, Group-06 Page 47

2. Software Requirements

 Web Server: Apache Tomcat Web Server, Linux based Operating System

 Data Base Server: MySQL, Linux based Operating System

 Development End: MySQL, Linux based Operating System (Ubuntu 10.10), Apache
Tomcat Web Server.

 Design Tool: Rational Software Architect, Rational Requirement Composer, Rational
Rose.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 48

Smart Analyzer

Software Requirements Specification

Version 1.1

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 49

Revision History

Date Version Description Author

04/10/2010 1.0 Software Requirements
Specification of the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Software Requirements
Specification of the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 50

Table of Contents

1. Introduction 51

1.1 Purpose 51
1.2 Scope 51
1.3 Definitions, Acronyms and Abbreviations 51
1.4 References 54
1.5 Overview 54

2. Overall Description 55

2.1 Product Perspective 55
2.2 Product Function 55
2.3 User Characterstics 55
2.4 Constraints 55
2.5 Assumptions and Dependencies 55

3. Specific Requirements 56

3.1 Functionality 56
3.2 Usability 58
3.3 Design Constraints 58
3.4 On-line User Documentation and Help System Requirements 58
3.5 Purchased Components 58
3.6 Interfaces 59
3.7 Licensing Requirements 59

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 51

1. Introduction

1.1 Purpose
The purpose of this document is to present software requirement specification for an access log
analyzer for proxy server. It will explain the purpose and features of the system, the interfaces of
the system, what the system will do, the constraints under which it must operate and how the
system will react to external stimuli. This document is intended for both the mentors and the
developers of the system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 52

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 53

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 54

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-
7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)
 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
SRS will contain two sections:

 Overall Description will describe major components of the system, interconnection and
external interfaces.

 Specific Requirements will describe the functions of actors, their role in the system and
constraints.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 55

2. Overall Description

2.1 Product Perspective

 The product will contain a GUI that will access the log file through a set of algorithms
and will analyze the log file as per those algorithms.

2.2 Product Function

 Access Logs : The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access information, but also system
configuration errors and resource consumption (eg. memory, disk space).

 Cache Logs : The Cache Log file contains the debug and error messages that Squid
generates.

 Store Logs : The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging purposes.

 Analysis Data : The analysis data will be stored in database in the form of tables, and
will be updated dynamically.

2.3 User Characteristics
Every user should be comfortable of working with He must have basic knowledge of English
too.

2.4 Constraints

 GUI is only in English.
 Login and password is used for authentication of the server administrator, biometric

authentication is not used.

2.5 Assumptions and Dependencies

 Administrator account is created in system already.
 The roles and tasks of administrator are predefined.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 56

3. Specific Requirements

3.1 Functionality

3.1.1. Simplified view of the access logs on Squid server is provided.

What shall be done? Simplified view of the access logs on Squid server is

provided.
How shall it be done? By providing a Graphical User Interface using simplified

values for values like access time, etc.
When it must be performed? During the implementation phase.

Who will perform it? Team members working on front-end development.

3.1.2. Dynamic view of various URLs being accessed from various IPs connected via proxy
server.

What shall be done? Dynamic view of various URLs being accessed from

various IPs connected via proxy server.
How shall it be done? By accessing the log file and updating the database

simultaneously in real time, from which analysis is done.
When it must be performed? During the implementation phase.

Who will perform it? Team members working on back-end development (database
management).

3.1.3. Graphical view of URLs being accessed versus following parameters is provided:

 Time window during which URL is accessed.

 Number of times URL is accessed.

What shall be done? Graphical view of URLs being accessed versus various

given parameters.
How shall it be done? By using APIs for providing dynamic image in Java Servlets.

When it must be performed? During the implementation phase.

Who will perform it? Team members working on back-end development.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 57

3.1.4. Break-up of the analysis on the basis of IP from which URL was accessed.

What shall be done? Break-up of the analysis on the basis of IP from which URL

was accessed.
How shall it be done? By providing a Graphical User Interface to read entries for host

(domain name or IP Address).
When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

3.1.5. Bandwidth used by each system can be viewed.

What shall be done? Bandwidth used by each system can be viewed.

How shall it be done? By providing a Graphical User Interface to show bandwidth usage
by each user.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

3.1.6. Break-up analysis on the basis of domain of website.

What shall be done? Break-up analysis on the basis of domain of website.

How shall it be done? By providing a Graphical User Interface to show the domain-wise
analysis.

When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

3.1.7. Break-up analysis on the basis of domain of website.

What shall be done? Analyze the processing time taken by proxy server to service a

particular system.
How shall it be done? By providing a Graphical User Interface to show processing time

of each system.
When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 58

3.1.8. Analyze the complete user traffic of a system.

What shall be done? Analyze the complete user traffic of a system.

How shall it be done? By providing a Graphical User Interface to show the user-traffic

analysis.
When it must be
performed?

During the implementation phase.

Who will perform it? Team members working on front-end development.

3.2 Usability

Our main criteria for making the system usable is the difficulty of performing each high-
frequency use case. Difficulty depends on the number of steps, the knowledge that the user must
have at each step, the decisions that the user must make at each step, and the mechanics of each
step (e.g., typing a book title exactly is hard, clicking on a title in a list is easy).

The user interface should be as familiar as possible to users who have used other desktop
applications. E.g., we will follow the UI guidelines for naming menus, buttons, and dialog boxes
whenever possible.

3.3 Design Constraints

 Java will be used for developing the project as all team members are trained to use it.
 Netbeans IDE will be used as the development tool due to its familiarity with all the team

members.
 Since all the team members are trained to use MySql as the database server, so it will be

implemented in the back-end development.

3.4 On-line User Documentation and Help System Requirements

Since there will only be one user of the system and the project is not being implemented on a
large scale so the documentation will be provided offline.

3.5 Purchased Components
No purchased components are used for development. The development is completely done on
freeware development tools.

Smart Analyzer Version: 1.1
Software Requirements Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 59

3.6 Interfaces

3.6.1 Software Interface:

 Web Server: Apache Tomcat Web Server, Linux based Operating System
 Data Base Server: MySQL, Linux based Operating System
 Development End: MySQL, Linux based Operating System (Ubuntu 10.04), Apache

Tomcat Web Server.
 Design Tool: Rational Software Architect, Rational Requirement Composer.

3.6.2 Hardware Interface:

Minimum Requirements:
Technology Processor RAM Disk Space
Firefox 2.0 Pentium II at 500MHz 64 MB 20 MB
Java SDK 1.6 Pentium III at 1GHz 512 MB 132 MB
Apache Tomcat Application
Server V6.0

Pentium III at 1GHz 512 MB 1 GB

MySql Pentium III at 1 GHz 512 MB
1GB (Excluding
data size)

3.7 Licensing Requirements
No licensing requirements are needed.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 60

Smart Analyzer

Stakeholder Requests

Version 1.1

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 61

Revision History

Date Version Description Author

04/10/2010 1.0 Stakeholder Requests of the
project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Stakeholder Requests of the
project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 62

Table of Contents

1. Introduction 63

1.1 Purpose 63
1.2 Scope 63
1.3 Definitions, Acronyms and Abbreviations 63
1.4 References 66
1.5 Overview 66

2. Establish Stakeholder or User Profile 67

3. Accessing the problem 68

4. Understanding the user environment 68

5. Analyst’s Inputs on Stakeholder’s Problem 69

6. Accessing the solution 69

6.1 User Manual 69
6.2 Offline Help 69

7. Accessing the Opportunity 69

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 63

1. Introduction

1.1 Purpose
The purpose of this document is to present the requests of stakeholders for an access log analyzer
for proxy server. It will explain the purpose and features of the system, the interfaces of the
system, what the system will do, the constraints under which it must operate and how the system
will react to external stimuli. This document is intended for both the mentors and the developers
of the system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 64

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 65

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 66

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
This document will contain four sections:

 Establish Stakeholder or User Profile.
 Accessing the problem.
 Understanding the User environment.
 Accessing the opportunities

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 67

2. Establish Stakeholder or User Profile
There is only one user to this system known as Server Administrator.

Name Description Responsibilities

Project Guide CSE Department and
SVITS college as a
whole

Responsible for project funding approval.
Monitors project progress

Customer Proxy Server
Administrator

Ensures that the system will meet the needs of
the server administrator.

System Designers Other stakeholders
include system
designers who design &
look the entire system

The responsibility of the system designers is to
develop a system which is easily maintainable,
secure and error free to increase the market
demand of the product.

Proxy Server
Administrator

Acts as administrator
and is main user of the
system

Responsible for analyzing the traffic on the
server.

System Designers Other stakeholders
include system
designers who design &
look the entire system

The responsibility of the system designers is to
develop a system which is easily maintainable,
secure and error free to increase the market
demand of the product.

Establishing the User Profile for the stakeholder:

 Company / Industry: Shri Vaishnav Institute of Technology and Science, Indore

 Job Title: Server Administrator

 What are your key responsibilities?

 To manage the server and analyse the data patterns.

 What deliverables do you produce?

No deliverables as such are produced as the main task is to ensure the proper working
of the server.

 How is success measured?

 The server should run smoothly at all times without any technical glitches.

 Which problems interfere with your success?

 The power cut results in restart of the server, thereby hindering the continuous
running of the server.

 Which, if any, trends make your job easier or harder?

 The job is simple as such, but sometimes problem with internet connectivity and
various network related problems make the job tough.

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 68

3. Accessing the problem
 For which analysis problems do you lack good solutions?

 The analysis of SQUID server file for linux is quite tough as some entries in it are
impossible to read.

 What are they?

 Some of the entries in the log file like that of access time are in non-readable format.
So using it to analyse the access patterns of the webpages is quite difficult.

Ask for each problem:

 Why does this problem exist?

 The standard format of the log file has the problem.

 How do you solve it now?

 As such there is no proper solution. Hit and Trial is used.

 How would you like to solve it?

 A system to convert the non-readable entries into readable format.

4. Understanding the user environment
 Who are the users?

 Only the server administrator is the user.

 What is their educational background?

 Should have atleast the graduation level degree, degree related to computer field is
preferred.

 What is their computer background?

 Should be proficient with the management of server, and should have a good
knowledge of handling various types of servers.

 Are users experienced with this type of application?

 Yes experience is very important in this type of work.

 Which platforms are in use?

Windows Server edition and Linux are mostly used.

 What are your plans for future platforms?

Using everything based on linux is preferred due to improved security, but the lack of
a good User interface is the reason for existence of Windows.

 Which additional applications do you use that we need to interface with?

 Also with analysis, if server management applications are included it is a huge boost
to the Linux usage for server.

 What are your expectations for usability of the product?

 Nothing as such. It should have a good User interface and should be easily operatable.

Smart Analyzer Version: 1.1
Stakeholder Requests Date: 30/11/2010

 IT 4th Year, Group-06 Page 69

 What are your expectations for training time?

 The person recruited for this kind of job is sufficiently trained. So no need for training
is needed.

 What kinds of hard copy and on-line documentation do you need?

 A user manual would be highly useful.

5. Analyst’s Inputs on Stakeholder’s Problem
 Is this a real problem?

 Yes managing a server is really tough job.

 What are the reasons for this problem?

The improved security features of linux also results in poor user friendly interface.

 How would you like to solve the problem?

Creating a good user interface using which analysis becomes easy.

6. Accessing the solution
6.1 User Manual
The User Manual shall describe use of the System from the operator’s view point. The User

Manual shall include:
 Minimum System Requirements
 Installation of the system
 Logging On
 Logging Off
 All System Features
 Customer Support Information

6.2 Offline Help
Offline Help shall be available to the user for each system function. Each topic will be covered in
the User Manual.

7. Accessing the Opportunity
The server administrator requires an effective way to monitor the traffic and to analyze the
obtained results.
The Software can be easily installed onto the system and user can very easily handle it. It saves
the time to analyze the results.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 70

Smart Analyzer

Story Board

Version 1.1

Smart Analyzer Version: 1.1
Story Board Date: 30/11/2010

 IT 4th Year, Group-06 Page 71

Revision History

Date Version Description Author

04/10/2010 1.0 Story Board of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Story Board of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Story Board Date: 30/11/2010

 IT 4th Year, Group-06 Page 72

Table of Contents

1. Introduction 73

2. Story Board 73

Smart Analyzer Version: 1.1
Story Board Date: 30/11/2010

 IT 4th Year, Group-06 Page 73

1. Introduction
Storyboards are graphic organizers such as a series of illustrations or images displayed in
sequence for the purpose of pre-visualizing a motion picture, animation, motion graphic or
interactive media sequence, including website interactivity.

2. Story Board

Client are communicating with Proxy server Server Admin finding difficulty in

analyzing log files.

 Smart analyzer generates a easily understandable log file report.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 74

Smart Analyzer

Supplementary Specification

Version 1.1

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 75

Revision History

Date Version Description Author

04/10/2010 1.0 Supplementary Specification of
the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Supplementary Specification of
the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 76

Table of Contents

1. Introduction 77

1.1 Purpose 77
1.2 Scope 77
1.3 Definitions, Acronyms and Abbreviations 80
1.4 References 80
1.5 Overview 80

2. Functionality 81

3. Usability 81

4. Design Constraints 81

5. On-line User Documentation and Help System Requirements 82

6. Purchased Components 82

7. Interfaces 82

8. Licensing Requirements 82

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 77

1. Introduction

1.1 Purpose
The purpose of this document is to present supplementary requirements specification for an
access log analyzer for proxy server. It will explain the purpose and features of the system, the
interfaces of the system, what the system will do, the constraints under which it must operate and
how the system will react to external stimuli. This document is intended for both the mentors and
the developers of the system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 78

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 79

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 80

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
Supplementary Specifications will contain following sections:

 Functionality
 Usability
 Design Constraints
 On-line User Documentation and Help System Requirements
 Purchased Components
 Interfaces
 Licensing Requirements

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 81

2. Functionality
 Having only one username and password, that is, of administrator so the security issues

are properly addressed.

What shall be done? Having only one username and password, that is, of
administrator so the security issues are properly
addressed.

How shall it be done? By providing a single user field in the database.

When it must be performed? During the implementation phase.

Who will perform it? Team members working on back-end development.

 Having hours of operations that are 24X7, since system is an automated process.

What shall be done? Having hours of operations that are 24X7.

How shall it be done? By keeping the resource utilization low for the system.

When it must be performed? During the implementation phase.

Who will perform it? Team members working on back-end.

3. Usability

Our main criteria for making the system usable is the difficulty of performing each high-
frequency use case. Difficulty depends on the number of steps, the knowledge that the user must
have at each step, the decisions that the user must make at each step, and the mechanics of each
step (e.g., typing a book title exactly is hard, clicking on a title in a list is easy).The user interface
should be as familiar as possible to users who have used other desktop applications. E.g., we will
follow the UI guidelines for naming menus, buttons, and dialog boxes whenever possible.

4. Design Constraints
 Java will be used for developing the project as all team members are trained to use it.
 Netbeans IDE will be used as the development tool due to its familiarity with all the team

members.
 Since all the team members are trained to use MySql as the database server, so it will be

implemented in the back-end development.

Smart Analyzer Version: 1.1
Supplementary Specification Date: 30/11/2010

 IT 4th Year, Group-06 Page 82

5. On-line User Documentation and Help System Requirements
Since there will only be one user of the system and the project is not being implemented on a
large scale so the documentation will be provided offline.

6. Purchased Components
No purchased components are used for development. The development is completely done on
freeware development tools.

7. Interfaces
7.1 Software Interface:

 Web Server: Apache Tomcat Web Server, Linux based Operating System
 Data Base Server: MySQL, Linux based Operating System
 Development End: MySQL, Linux based Operating System (Ubuntu 10.04), Apache

Tomcat Web Server.
 Design Tool: Rational Software Architect, Rational Requirement Composer.

7.2 Hardware Interface:
Minimum Requirements:
Technology Processor RAM Disk Space
Firefox 2.0 Pentium II at 500MHz 64 MB 20 MB
Java SDK 1.6 Pentium III at 1GHz 512 MB 132 MB
Apache Tomcat Application
Server V6.0

Pentium III at 1GHz 512 MB 1 GB

MySql Pentium III at 1 GHz 512 MB
1GB (Excluding
data size)

8. Licensing Requirements
No licensing requirements are needed.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 83

Smart Analyzer

Use Case Model

Version 1.1

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 84

Revision History

Date Version Description Author

04/10/2010 1.0 Use Case Model of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

30/11/2010 1.1 Use Case Model of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 85

Table of Contents

1. Use Case Model Survey 86

2. Use Case Report 87

3. Activity Diagram 98

4. Sequence Diagram 99

5. Collaboration Diagram 102

6. Statechart Diagram 105

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 86

1. Use Case Model Survey

Server Administrator: The user of the system responsible for analyzing the data on the
proxy server.

 Search: The server administrator can search any string in the logs. The
administrator will enter the search string and the system will match the string in
the available logs. If a match is found it is reported to the user.

 Analyze Data: The server administrator will analyze the access logs on the proxy
server. He can find various parameters with respect to the IP address.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 87

2. Use Case Report

2.1 Use Case: Search

 Brief Introduction: The server administrator can search any string in the logs. The

administrator will enter the search string and the system will match the string in the
available logs. If a match is found it is reported to the user.

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate search page which

request server administrator to enter
search string.

---------- -----------

2. Server Administrator The server administrator enters the
search string.

---------- -----------

3. Server Administrator System generates required page listing
all the available matching results.

Search
string not
found

Alternate
flow

4. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an alert

message telling that the search string
does not match any search

--------- -----------

2. Server Administrator The actor can choose to either return
to the main flow or cancel the
searching, at which point the use
case ends.

----------- -----------
-

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 88

User enters the
search keyword

Use confirms
the search

System matches
search string

System displays
the result

System alerts that
string not found

 Precondition: None.

 Post condition: If the use case was successful, the valid list of search results is shown.

 Actor: Server Administrator.

 Special Requirements: None.

2.2 Use Case: Analyze Data

 Brief Introduction: The server administrator will analyze the access logs on the proxy

server. He can find various parameters with respect to the IP address.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 89

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate data analysis which

request server administrator to choose
the operation.

---------- -----------

2. Server Administrator The server administrator chooses the
operation.

---------- -----------

3. Server Administrator The server administrator chooses the
mode view of the data.

---------- ----------

4. Server Administrator System generates required result of the
query it searched for in the log file.

Cannot
process data

Alternate
Flow

5. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an error

message that the data queried for
cannot be processed.

--------- -----------

2. Server Administrator The actor can choose to either try
again or cancel the operation, at
which point the use case ends.

----------- -----------
-

System asks the user to
choose the operation

User enters
the operation

System performs
the operation

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 90

 Precondition: None.

 Post condition: None.

 Actor: Server Administrator.

 Special Requirements: None.

2.3 Use Case: Analyze Bandwidth Usage

 Brief Introduction: The server administrator will analyze the bandwidth usage by each

system. He can find bandwidth usage with respect to the IP address.

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate data analysis which

request server administrator to choose
the operation.

---------- -----------

2. Server Administrator The server administrator chooses the
operation of finding bandwidth usage
of each system.

---------- -----------

3. Server Administrator The server administrator chooses the
mode view of the data.

---------- ----------

4. Server Administrator System generates required result of the
query it searched for in the log file.

Cannot
process data

Alternate
Flow

5. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an error

message that the data queried for
cannot be processed.

--------- -----------

2. Server Administrator The actor can choose to either try
again or cancel the operation, at
which point the use case ends.

----------- -----------
-

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 91

System asks the user to
choose the operation

User chooses the
bandwidth usage option

System asks for
view of data

User chooses
the view of data

System finds bandwidth
usage of each system

Query cannot
be processed

Query is
processed

Bandwidth usage
analysis is displayed

Error message
is reported

 Precondition: None.

 Post condition: If the use case was successful, the bandwidth usage of each system is

shown.

 Actor: Server Administrator.

 Special Requirements: None.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 92

2.4 Use Case: Analyze Processing Time

 Brief Introduction: The server administrator will analyze the processing time of data

packets of each system.

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate data analysis which

request server administrator to choose
the operation.

---------- -----------

2. Server Administrator The server administrator chooses the
operation of finding processing time
of each system.

---------- -----------

3. Server Administrator The server administrator chooses the
mode view of the data.

---------- ----------

4. Server Administrator System generates required result of the
query it searched for in the log file.

Cannot
process data

Alternate
Flow

5. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an error

message that the data queried for
cannot be processed.

--------- -----------

2. Server Administrator The actor can choose to either try
again or cancel the operation, at
which point the use case ends.

----------- -----------
-

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 93

System asks the user to
choose the operation

User chooses the option of
analyzing the processing time

System asks for
view of data

User chooses
the view of data

System finds processing
time of each system

Query cannot
be processed

Query is
processed

Analysis of processing time of
each system is displayed

Error message
is reported

 Precondition: None.

 Post condition: If the use case was successful, the processing time of data packets for
each system is shown.

 Actor: Server Administrator.

 Special Requirements: None.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 94

2.5 Use Case: Analyze User Traffic

 Brief Introduction: The server administrator will analyze the user traffic for each

system.

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate data analysis which

request server administrator to choose
the operation.

---------- -----------

2. Server Administrator The server administrator chooses the
operation of finding user traffic of
each system.

---------- -----------

3. Server Administrator The server administrator chooses the
mode view of the data.

---------- ----------

4. Server Administrator System generates required result of the
query it searched for in the log file.

Cannot
process data

Alternate
Flow

5. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an error

message that the data queried for
cannot be processed.

--------- -----------

2. Server Administrator The actor can choose to either try
again or cancel the operation, at
which point the use case ends.

----------- -----------
-

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 95

System asks the user to
choose the operation

User chooses the option of
analyzing the user traffic

System asks for
view of data

User chooses
the view of data

System finds user traffic for
each system

Query cannot
be processed

Query is
processed

Analysis of user traffic for each
system is displayed

Error message
is reported

 Precondition: None.

 Post condition: If the use case was successful, the user traffic for each system is shown.

 Actor: Server Administrator.

 Special Requirements: None.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 96

2.6 Use Case: Analyze by domain

 Brief Introduction: The server administrator will do the domain-wise analysis of each

system.

 Flow Of Events:

BASIC FLOW:
Step Actor Description Condition Location
1. Server Administrator System generate data analysis which

request server administrator to choose
the operation.

---------- -----------

2. Server Administrator The server administrator chooses the
operation of domain-wise analysis of
each system.

---------- -----------

3. Server Administrator The server administrator chooses the
mode view of the data.

---------- ----------

4. Server Administrator System generates required result of the
query it searched for in the log file.

Cannot
process data

Alternate
Flow

5. Server Administrator Use Case Ends. ----------- ------------

ALTERNATE FLOW:
Step Actor Description Condition Location
1. Server Administrator The System displays an error

message that the data queried for
cannot be processed.

--------- -----------

2. Server Administrator The actor can choose to either try
again or cancel the operation, at
which point the use case ends.

----------- -----------
-

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 97

System asks the user to
choose the operation

User chooses the option of
analyzing the system domain-wise

System asks for
view of data

User chooses
the view of data

System finds domain-wise
analysis of the system

Query cannot
be processed

Query is
processed

Analysis of system as per
domains is displayed

Error message
is reported

 Precondition: None.

 Post condition: If the use case was successful, the domain-wise analysis for each system

is shown.

 Actor: Server Administrator.

 Special Requirements: None.

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 98

3. Activity Diagram

An Activity Diagram is essentially a flow chart showing flow of control from activity to activity.
They are used to model the dynamic aspects of as system. They can also be used to model the
flow of an object as it moves from state to state at different points in the flow of control.

Activity diagrams commonly contain Fork Start & End Symbol.

Choose Activity

Choose Analysis
option Search

Analyze Bandwidth
Usage

Analyze
Processing Time

Analyze by
Domain

Analyze
User Traffic

Select
View

Statistical
View

Graphical
View

System Display
the Result

System displays
search result

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 99

4. Sequence Diagram
A sequence diagram is an interaction diagram that emphasizes the time ordering of the messages.
Graphically, a sequence diagram is a table that shows objects arranged along the X-axis and
messages, ordered in increasing time, along the Y axis.

A sequence diagram is a 2-dimensional in nature that depicts the sequence of actions that occur
in a system .The invocation of methods in each object and the order in which the invocation
occurs is ciphered in a sequence diagram .Thus it easily represents the dynamic behavior of a
system .Elements of sequence diagram are:

 Object: This is the primary element involved the instance of a class. A sequence diagram
consists of sequence of interaction among different objects over a period of time.

 Message: The interaction between different objects in a sequence diagram is represented

as message.

Sequence Diagram for Search:

Server
Administrator

Server
Administrator

Welcome
Screen

Welcome
Screen

Ask for Search
String

Ask for Search
String

Process the
request

Process the
request

1: select option: server admin

2: select search: server admin

3: check the log file: system

4: show result: system

5: new search
6: if (exit)

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 100

Sequence Diagram for Analysing Bandwidth Usage:

Server
Administrator

Server
Administrator

Welcome
Screen

Welcome
Screen

Ask for ViewAsk for View Process the
request

Process the
request

1: select option: server admin

2: select <bandwidth usage>: server admin

3: select view: server admin

4: show result: system

5: change view
6: if (exit)

Sequence Diagram for Analysing Processing Time:

Server
Administrator

Server
Administrator

Welcome
Screen

Welcome
Screen

Ask for ViewAsk for View Process the
request

Process the
request

1: select option: server admin

2: select <processing time>: server admin

3: select view: server admin

4: show result: system

5: change view
6: if (exit)

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 101

Sequence Diagram for Analysing User Traffic:

Server
Administrator

Server
Administrator

Welcome
Screen

Welcome
Screen

Ask for ViewAsk for View Process the
request

Process the
request

1: select option: server admin

2: select <user traffic>: server admin

3: select view: server admin

4: show result: system

5: change view
6: if (exit)

Sequence Diagram for Analysis by Domain:

Server
Administrator

Server
Administrator

Welcome
Screen

Welcome
Screen

Ask for ViewAsk for View Process the
request

Process the
request

1: select option: server admin

3: select view: server admin

4: show result: system

5: change view
6: if (exit)

2: select <analyze by domain>: server admin

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 102

5. Collaboration Diagram
Collaboration Diagrams show the interactions occurring between the objects participating in a
specific situation. This is more or less the same information shown by Sequence Diagrams but
there the emphasis is put on how the interactions occur in time while the Collaboration Diagrams
put the relationships between the objects and their topology in the foreground.

In Collaboration Diagrams messages sent from one object to another are represented by arrows,
showing the message name, parameters, and the sequence of the message. Collaboration
Diagrams are especially well suited to showing a specific program flow or situation and are one
of the best diagram types to quickly demonstrate or explain one process in the program logic.

Collaboration Diagram for Search:

Welcome
Screen

Ask for Search
String

Server
Administrator

Process the
request

5: new search

2: select search: server admin

6: if (exit)

3: check the log file: system4: show result: system

1: select option: server admin

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 103

Collaboration Diagram for Analysing Bandwidth Usage:

Welcome
Screen

Ask for
View

Server
Administrator

Process the
request

5: change view

2: select <bandwidth usage>: server admin

6: if (exit)

3: select view: server admin4: show result: system

1: select option: server admin

Collaboration Diagram for Analysing Processing Time:

Welcome
Screen

Ask for
View

Server
Administrator

Process the
request

5: change view

2: select <processing time>: server admin

6: if (exit)

3: select view: server admin4: show result: system

1: select option: server admin

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 104

Collaboration Diagram for Analysing User Traffic:

Welcome
Screen

Ask for
View

Server
Administrator

Process the
request

5: change view

2: select <user traffic>: server admin

6: if (exit)

3: select view: server admin4: show result: system

1: select option: server admin

Collaboration Diagram for Analysis by Domain:

Welcome
Screen

Ask for
View

Server
Administrator

Process the
request

5: change view

2: select <analyze by domain>: server admin

6: if (exit)

3: select view: server admin4: show result: system

1: select option: server admin

Smart Analyzer Version: 1.1
Use Case Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 105

6. Statechart Diagram
State diagrams are used to describe the behavior of a system. State diagrams show the dynamic
behavior of a system. The diagram shows the various states that an object can get into and the
transitions that occur between the states. Each diagram usually represents objects of a single
class and tracks the different states of its objects through the system.

It shows the life of an object from birth to death. In this type of diagram, you see the behavior
specifying the sequence of states that the object goes through in response to events over its
lifetime, and you see the object's responses to those events.

It consists of:

 State: The state object is a snapshot of an object at a particular point in its life. A state
may have an activity describing the function being performed.

 Initial State: The initial state is the starting state of the object with reference to the

behavior that the diagram explains. Each state diagram should have only one initial state.

 Final State: Each final state is the ending state of the object with reference to the
behavior that the diagram explains. There may be multiple final states for an object.

 Transition: The transition link represents the relationship between different states of an

object. The transition guard is a condition which limits the cases in which a transition can
occur. The transition action is performed during the transition and cannot be interrupted.

Statechart Diagram for Server Administrator:

Display
Welcome Screen

Select
Function

Select
View

Result
Displayed

option selected

view selected

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 106

Smart Analyzer

Iteration Plan

Version 1.0

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 107

Revision History

Date Version Description Author

30/11/2010 1.0 Iteration Plan of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 108

Table of Contents

1. Introduction 109

1.1 Purpose 109
1.2 Scope 109
1.3 Definitions, Acronyms and Abbreviations 109
1.4 References 112
1.5 Overview 112

2. Plan 113

3. Resources 115

3.1 People by Role 115
3.2 Peole by Skill 115
3.3 Hardware Resource 115
3.4 Software Resource 115

4. Use Cases 116

5. Evaluation Criteria 116

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 109

1. Introduction

1.1 Purpose
The purpose of this document is to present the iteration plan for an access log analyzer for proxy
server. It will explain the purpose and features of the system, the interfaces of the system, what
the system will do, the constraints under which it must operate and how the system will react to
external stimuli. This document is intended for both the mentors and the developers of the
system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 110

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 111

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 112

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
This document will contain four sections:

 Plan
 Resources
 Use Cases
 Evaluation Criteria

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 113

2. Plan

Software project planning and scheduling is an activity that distributes estimated effort across the
planned project duration by allocating the effort to specific software engineering tasks. It is
important to know however that the schedule evolves overtime. During early stage of project
planning, a macroscopic schedule is developed.

A number of basic principles guide software project scheduling :

1. Compartmentalization - The project must be compartmentalized into a number of
manageable activities and tasks. To accomplish compartmentalization, both the product and the
process are decomposed.

2. Interdependency - The interdependency of each compartmentalized activity or task must be
determined. Some tasks must occur in sequence while other can occur in parallel. Some activities
can't commence until the work product produced by another is available. Other activity can occur
independently.

3. Time Allocation - Each task to be scheduled must be allocated some no. of work units. In
addition, each task must be assigned a start date and a completion date that are function of
interdependency and whether the work will be conducted by the full time or the part time basis.

4. Effort validation - Each project has a define no. of staff members. As time allocation occurs,
a project manager must assure that no more than the allocated no. of people have been schedule
at a given time.

5. Defined responsibility - Every task that is scheduled should be assigned to a specific team
member.

6. Defined outcomes - Every task that is schedule should have defined outcomes. For software
products the outcome is normally a work product or a part of a work product.

7. Defined milestones - Every task or group of task should be associated with a project
milestone. A milestone is accomplished when one or more work product has been reviewed for
quality and has been approved.

The estimated project plan and schedule keeping the above points in mind is outlined as follows:

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 114

S. No. Milestone Date Milestone Deliverables

1. 06-Sept,2010 to
09-Oct,2010

Inception: Requirements
Signoff

Analysis and requirements specification,
Iteration Plan.

2. 11-Oct,2010 to
30-Oct,2010

Elaboration: Iteration-1 Sequence Diagrams, Class Diagrams,
Plan for next cycle

3. 01-Nov,2010 to
27-Nov,2010

Elaboration: Iteration-2 Supplementary Specification, Sequence
Diagrams, Class Diagrams, Architecture
Document, Iteration plan for next cycle.

4. 31-Jan,2011 to
26-Feb,2011

Construction: Iteration-1 Source Code, Review Reports, Test
Reports, Iteration for next cycle

5. 28-Feb,2011 to
19-Mar,2011

Construction: Iteration-2 Source Code, Review Reports, Test
Reports, Iteration for next cycle

6. 21-Mar,2011 to
16-Apr,2011

Construction: Iteration-3 Source Code, Review Reports, Test
Reports, Iteration for next cycle,
Deployment Plan for the project.

7. 18-Apr,2011 to
14-May,2011

Integration Testing
Phase

Test Reports

8. 16-May,2011 to
28-May,2011

Roll out and Support Project Sign Off

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 115

Other Commitments: This project will follow the Rational Unified Methodology (RUP)

Assumption made while planning: Changes in functional and technical requirements during the
life cycle of the project may have an impact on the schedule. Any change in cost or schedule will
be intimidated though new version of the document.

3. Resources
3.1 People by Role

Role Requirement Phase

Project In-charge 1 Full Time

Project Guide 2 Full Time

Project Developers 4 Full Time

3.2 People by Skill

Area of Skill Requirement Phase

Rational Software Architect 1 Elaboration

Java 3 Construction

MySql 2 Construction

Netbeans 1 Construction

3.3 Hardware Resource

Role Requirement Phase

PC with 256MB RAM 2 Inception/ Elaboration

1GB space on server 1 Construction

PC with 512MB RAM 5 Construction

3.4 Software Resource

Role Requirement Phase

Rational Software Architect 1 Elaboration

Rational Requirement Composer 1 Elaboration

Ubuntu 10.10 4 Construction

MySql 2 Construction

Smart Analyzer Version: 1.0
Iteration Plan Date: 30/11/2010

 IT 4th Year, Group-06 Page 116

4. Use Cases

Use Case
Number Description Complexity

Use Case 1 Searches the string entered by user Simple

Use Case 2 Analyses the data queried by the user Complex

Use Case 3 Analyses the bandwidth used by each system Complex

Use Case 4 Analyses the processing time for each system Medium

Use Case 5 Analyses the User traffic from each IP Complex

Use Case 6 Analyses the data according to the domain Complex

Estimation Criteria:

Program/Function (Use Case) Criteria

Simple Use Case 3 or fewer transactions

Medium Use Case 4 to 7 transactions

Complex Use Case Greater than 7 transactions

5. Evaluation Criteria
Strategy for meeting Quality Goals:

Strategy Expected Benefits

Do defect prevention using standard defect
prevention guidelines and process: use
standards developed in synergy for coding.

10-20% reduction in defect injection rate and
about 2% improvement in quality

Group review of program specifications for
first few/logically complex use cases.

Improvement in quality as well as defect
removal efficiency will improve

Introduction of RUP methodology and
implementing the project in iterations.
Milestone analysis and defect prevention
exercise will be done after each iteration.

Approximately 5% reduction in defect
injection rate and about 1% improvement in
quality

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 117

Smart Analyzer

Software Architecture Document

Version 1.0

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 118

Revision History

Date Version Description Author

30/11/2010 1.0 Software Architecture Plan of
the project

IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 119

Table of Contents

1. Introduction 120

1.1 Purpose 120
1.2 Scope 120
1.3 Definitions, Acronyms and Abbreviations 120
1.4 References 123
1.5 Overview 123

2. Architectural Representation 124

3. Architectural Goals and Constraints 125

4. Logical View 125

5. Process View 126

6. Deployment View 127

7. Use Case View 127

8. Size and Performance 128

9. Quality 128

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 120

1. Introduction

1.1 Purpose
The purpose of this document is to present the Software Architecture Document for an access log
analyzer for proxy server. It will explain the purpose and features of the system, the interfaces of
the system, what the system will do, the constraints under which it must operate and how the
system will react to external stimuli. This document is intended for both the mentors and the
developers of the system.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 121

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 122

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 123

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
This document will contain four sections:

 Architectural Representation
 Architectural Goals and Constraints
 Logical View
 Use Case View
 Deployment View
 Size and Performance
 Quality

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 124

2. Architectural Representation
This document details the architecture using the views defined in the “4+1” model [KRU41], but

using the RUP naming convention. The views used to document the Smart Analyzer are:

 Logical view

Audience: Designers.
Area: Functional Requirements: describes the design's object model. Also describes the most
important use-case realizations and business requirements of the system.
Related Artifacts: Design model

 Process view

Audience: Integrators.
Area: Non-functional requirements: describes the design's concurrency and synchronization
aspects.
Related Artifacts: (no specific artifact).

 Implementation view

Audience: Programmers.
Area: Software components: describes the layers and subsystems of the application.
Related Artifacts: Implementation model, components

 Deployment view

Audience: Deployment managers.
Area: Topology describes the mapping of the software onto the hardware and shows the
system's distributed aspects. Describes potential deployment structures, by including known
and anticipated deployment scenarios in the architecture we allow the implementers to make
certain assumptions on network performance, system interaction and so forth.
Related Artifacts: Deployment model.

 Use Case view

Audience: all the stakeholders of the system, including the end-users.
Area: describes the set of scenarios and/or use cases that represent some significant, central
functionality of the system. Describes the actors and use cases for the system, this view
presents the needs of the user and is elaborated further at the design level to describe discrete
flows and constraints in more detail
Related Artifacts : Use-Case Model, Use-Case documents

 Data view (optional)

Audience: Data specialists, Database administrators
Area: Persistence describes the architecturally significant persistent elements in the data
model
Related Artifacts: Data model.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 125

3. Architectural Goals and Constraints
There are some key requirements and system constraints that have a significant bearing on the
architecture. They are:

 The goal of this project is to analyze the request patterns of different web sites on the
proxy server.

 It must be designed specifically for single user. The system would be designed for easy to
use, providing help instructions, and appropriate error messages for invalid user inputs. It
is designed to be used by end users with computer background and would be designed in
a user-friendly manner.

4. Logical View
A description of the logical view of the architecture describes the most important classes, their
organization in service packages and subsystems, and the organization of these subsystems into
layers. Also describes the most important use-case realizations, for example, the dynamic aspects
of the architecture. Class diagrams may be included to illustrate the relationships between
architecturally significant classes, subsystems, packages and layers.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 126

5. Process View
A description of the process view of the architecture describes the tasks (processes and threads)
involved in the system's execution, their interactions and configurations. Also describes the
allocation of objects and classes to tasks.

There’s only one process to take into account. The program will automatically handle threads
which are instances of this process. The diagram below describes the process circles. There are
two process circles:

 Proxy server administrator –Server circle

 Server-database circle.

Request message from a Proxy server administrator first will travel to a server. Server first
evaluated a request according to the business rules/requirements and determines if a connection
to a database needs to be established. If connection is necessary, that is completed first and only
then Proxy server administrator is returned with response from a server.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 127

6. Deployment View
A description of the deployment view of the architecture describes the various physical nodes for
the most typical platform configurations. Also describes the allocation of tasks (from the Process
View) to the physical nodes.

The Diagram below shows the proposed deployment view of the smart analyzer with its main
components and relation between them

Proxy Server

Workstations
Smart Analyzer

Local
Database

LAN

JDBC:ODBC
Bridge

InternetAWT Forms

World Wide
Web

7. Use Case View

Server Administrator: The user of the system responsible for analyzing the data on the proxy
server.

 Search: The server administrator can search any string in the logs. The administrator will

enter the search string and the system will match the string in the available logs. If a
match is found it is reported to the user.

 Analyze Data: The server administrator will analyze the access logs on the proxy server.

He can find various parameters with respect to the IP address.

Smart Analyzer Version: 1.0
Software Architecture Document Date: 30/11/2010

 IT 4th Year, Group-06 Page 128

8. Size and Performance
The software with less loading time and high performance is required for maximum customer
satisfaction.

9. Quality
The software architecture supports the following quality requirements:

 The desktop user-interface shall be Linux compliant.

 The user interface of the Smart Analyzer shall be designed for ease-of-use and shall be
appropriate for a computer-literate user community with little additional training on the
System.

 Each feature of the application shall have built-in help for the user. Help shall include
step by step instructions on using the System. Help shall include definitions for terms
and acronyms.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 129

Smart Analyzer

Risk List

Version 1.0

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 130

Revision History

Date Version Description Author

30/11/2010 1.0 Risk List of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 131

Table of Contents

1. Introduction 132

1.1 Purpose 132
1.2 Scope 132
1.3 Definitions, Acronyms and Abbreviations 132
1.4 References 135
1.5 Overview 135

2. Risks 136

2.1 Risk of Server Overloading 136
2.2 Risk of using Proxy Websites 136
2.3 Risk of using Graphs 136
2.4 Risk of having inexperience of RUP 137

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 132

1. Introduction

1.1 Purpose
The purpose of this document is to present list of risks involved in developing an access log
analyzer for proxy server. The risk list is designed to capture the perceived risks to the success of
the project. It identifies, in decreasing order of priority, the events that could lead to a significant
negative outcome. It serves as a focal point for project activities and is the basis around which
iterations are organized.

1.2 Scope
The problem with for construction of an efficient user interface for analyzing data flow on a
proxy server is well known. We are currently developing a system for managing the SQUID
proxy server on Linux based operating systems. Till now the analysis of web logs on a server is
not easy as most of the entries on the SQUID server log are very hard to be read.

1.3 Definitions, Acronyms and Abbreviations

Term Description

Access Logs The access logs are a valuable source of information about Squid
workloads and performance. The logs record not only access
information, but also system configuration errors and resource
consumption.

Activity Graph A special case of a state machine that is used to model processes
involving one or more classifiers.

Actor (class)

Defines a set of actor instances, in which each actor instance plays the
same role in relation to the system.

Actor (instance) Someone or something, outside the system that interacts with the
system.

Analysis The part of the software development process whose primary purpose is
to formulate a model of the problem domain.

Analyzer An analyzer is a person or device that analyses given data. It examines
in detail the structure of the given data and tries to find patterns and
relationships between parts of the data.

API Application Programming Interface. A software interface that enables
applications to communicate with each other. An API is the set of
programming language constructs or statements that can be coded in an
application program to obtain the specific functions and services
provided by an underlying operating system or service program.

Artifact A physical piece of information that is used or produced by a software
development process. An artifact may constitute the implementation of
a deployable component.

Cache Log The Cache Log file contains the debug and error messages that Squid
generates.

Change Management The activity of controlling and tracking changes to artifacts.

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 133

Change Request (CR) A general term for any request from a stakeholder to change an artifact
or process. Documented in the Change Request is information on the
origin and impact of the current problem, the proposed solution, and its
cost.

Class A description of a set of objects that share the
same attributes, operations, methods, relationships, and semantics.

Class Diagram A diagram that shows a collection of declarative (static) model
elements, such as classes, types, and their contents and relationships.

Class Hierarchy The relationships among classes that share a single inheritance.
Collaboration
Diagram

A collaboration diagram describes a pattern of interaction among
objects; it shows the objects participating in the interaction by their links
to each other and the messagesthey send to each other.

Component A non-trivial, nearly independent, and replaceable part of a system that
fulfils a clear function in the context of a well-defined architecture.

Deployment A discipline in the software-engineering process, whose purpose is to
ensure a successful transition of the developed system to its users.

Deployment Diagram A diagram that shows the configuration of run-time processing nodes
and the components, processes , and objects that live on them.
Components represent run-time manifestations of code units.

Deployment
Environment

A specific instance of a configuration of hardware and software
established for the purpose of installing and running the developed
software for its intended use.

Deployment Unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-
time composite or an aggregate.

Deployment View An architectural view that describes one or several system
configurations; the mapping of software components (tasks, modules) to
the computing nodes in these configurations.

Design The part of the software development process whose primary purpose is
to decide how the system will be implemented. During design, strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

Design Model An object model describing the realization of use cases ; serves as an
abstraction of the implementation model and its source code.

Design Pattern A design pattern provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes a commonly-recurring structure of communicating
components that solves a general design problem within a particular
context.

Fault-based Testing A technique for testing computer software using a test method and test
data to demonstrate the absence or existence of a set of pre-
defined faults.

Graphical User
Interface (GUI)

A type of interface that enables users to communicate with a program by
manipulating graphical features, rather than by entering commands.

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 134

IP Address An Internet Protocol address (IP address) is a numerical label that is
assigned to any device participating in a computer network that uses
the Internet Protocol for communication between its nodes.

Linux Linux refers to the family of Unix-like computer operating
systems using the Linux kernel.

Object Oriented
Programming

A programming approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques, object-oriented
programming concentrates on those data objects that constitute the
problem and how they are manipulated, not on how something is
accomplished.

Prototype A release that is not necessarily subject to change management
and configuration control.

Proxy Server A proxy server is a server that acts as an intermediary for requests
from clients seeking resources from other servers.

Quality Assurance All those planned and systematic actions necessary to provide adequate
confidence that a product or service will satisfy given requirements for
quality.

Scenario A specific sequence of actions that illustrates behaviours. A scenario
may be used to illustrate an interaction or the execution of one or more
use-case instances.

Server A server is a computer, or series of computers, that link other computers
or electronic devices together. They often provide essential services
across a network, either to private users inside a large organization or to
public users via the internet.

Stakeholder An individual who is who is materially affected by the outcome of the
system.

State Machine A state machine specifies the behavior of a model element, defining its
response to events and the life cycle of the object.

Store Log The Store Log file covers the objects currently kept on disk or removed
ones. As a kind of transaction log it is usually used for debugging
purposes.

Squid Squid is a proxy server and web cache daemon. It has a wide variety of
uses, from speeding up a web server by caching repeated requests; to
caching web, DNS and other computer network lookups for a group of
people sharing network resources; to aiding security by filtering traffic.

Template A predefined structure for an artifact.
Unicode A character coding system designed to support interchange, and display

of the written texts of the diverse languages of the modern world.
UML Abbreviation of Unified Modeling Language, a language for

visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system

URL Abbreviation of Uniform Resource Locator, the global address of
documents and other resources on the World Wide Web.

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 135

Use Case A description of system behavior, in terms of sequences of actions. A
use case should yield an observable result of value to an actor.

Use Case Diagram A diagram that shows the relationships among actors and use
cases within a system.

Use Case Instance The performance of a sequence of actions being specified in a use case.
An instance of a use case.

Use Case Model A model that describes a system's functional requirements in terms
of use cases.

Use Case Package A use-case package is a collection of use cases, actors, relationships,
diagrams, and other packages; it is used to structure the use-case model
by dividing it into smaller parts.

Use Case Realization A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects.

Version A variant of some artifact; later versions of an artifact typically expand
on earlier versions.

Workspace The work area that contains all the code you are currently working on;
that is, current editions.

1.4 References
Applicable references are:-

 Design of the Visualized Assistant for the Management of Proxy Server - Shaowei Feng
Jing Zhang Bin Zeng, ISBN 978-1-4244-8231-3.

 Web object life measurement using Squid Log File - Khunkitti A, Intraha W., ISBN 0-

7695-1187-4.

 Mastering UML with Rational Rose by Wendy Boggs Michael Boggs (Sybex Inc.)

 UML Distilled by Martin Fowler and Kendall Scott (Addison Wesley)

1.5 Overview
Supplementary Specifications will contain following sections:

 Risks

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 136

2. Risks

2.1 Risk of server overloading

2.1.1 Risk Magnitude/ranking

This risk has magnitude of 6

2.1.2 Description

Load on server may cause decrease in performance or system failure.

2.1.3 Mitigation Strategy

Continuously monitoring the network traffic so that no complications occur.

2.2 Risk of using proxy websites

2.2.1 Risk Magnitude/ranking

This risk has magnitude of 4

2.2.2 Description

If a proxy site is used to open a restricted site, then log of that file cannot be maintained.

2.2.3 Mitigation Strategy

This can be prevented by using deep packet inspection which requires a lot of efforts as it
inspects each packet passing through it.

2.3 Risk of using graphs

2.3.1 Risk Magnitude/ranking

This risk has magnitude of 5

2.3.2 Description

The calculations used to generate graphs for log file analysis are complex. Thus the graph
generation may be slow. Thus the view generated will not be completely dynamic.

2.3.3 Mitigation Strategy

This can be improved by increasing the server memory.

Smart Analyzer Version: 1.0
Risk List Date: 30/11/2010

 IT 4th Year, Group-06 Page 137

2.4 Risk of having inexperience of RUP

2.4.1 Risk Magnitude/ranking

This risk has magnitude of 3

2.4.2 Description

The development team is relatively inexperienced with the Rational Unified Process (RUP) and
Object Oriented Techniques. This could lead to lower efficiency and poorer product quality.

2.4.3 Mitigation Strategy

This can be minimized by attending training sessions for Object Oriented Development and the
Rational Unified Process.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 138

Smart Analyzer

Analysis Classes

Version 1.0

Smart Analyzer Version: 1.1
Analysis Classes Date: 30/11/2010

 IT 4th Year, Group-06 Page 139

Revision History

Date Version Description Author

30/11/2010 1.0 Analysis Classes of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.1
Analysis Classes Date: 30/11/2010

 IT 4th Year, Group-06 Page 140

Table of Contents

1. Introduction 141

2. Boundary Classes 142

3. Control Classes 142

4. Entity Classes 142

Smart Analyzer Version: 1.1
Analysis Classes Date: 30/11/2010

 IT 4th Year, Group-06 Page 141

1. Introduction

There are three kinds of classes in the analysis model (see Figure below):

 Boundary class
 Control class
 Entity class

Boundary Control Entity

Figure: Analysis model classes

 Boundary class

A boundary class is a class used to model interaction between the system's surroundings and
its inner workings. Such interaction involves transforming and translating events and noting
changes in the system presentation (such as the interface). Common boundary classes include
windows, communication protocols, printer interfaces, sensors, and terminals.

Boundary classes model the parts of the system that depend on its surroundings. Entity
classes and control classes model the parts that are independent of the system's surroundings.

 Control class

A control class is a class used to model control behavior specific to one or a few use cases. It
coordinates between the boundary class and an entity class or other components. It contains
the logic to invoke appropriate components to complete the path. Control classes can
contribute to understanding the system because they represent the dynamics of the system,
handling the main tasks and control flows

 Entity class

An entity class is a class used to model information and associated behavior that must be
stored. Entity objects (instances of entity classes) are used to hold and update information
about some phenomenon, such as an event, a person, or some real-life object. They are
usually persistent, having attributes and relationships needed for a long period, sometimes for
the life of the system.

Smart Analyzer Version: 1.1
Analysis Classes Date: 30/11/2010

 IT 4th Year, Group-06 Page 142

2. Boundary Classes

 Proxy Server

 Generate data analysis which request server administrator to choose the operation.

 Generates required result of the query it searched for in the log file.

 Displays an error message that the data queried for cannot be processed.

 Asks server administrator to choose the mode view of the data.

3. Control Classes

 Analyze bandwidth usage: it is selected for viewing the log as per the bandwidth usage
by the users.

 Analyze processing time: it is selected for viewing the log as per the processing time by
the users.

 Analyze by domain: it is selected for viewing the log as per the domain by the users.

 Analyze user traffic: it is selected for viewing the log as per the traffic.

4. Entity Classes

 Change view: it helps the proxy server administrator to change the view (either textual or

graphical) of the log the proxy server would show to him.

IT 4th year, Group-06

 IT 4th Year, Group-06 Page 143

Smart Analyzer

Analysis Model

Version 1.0

Smart Analyzer Version: 1.0
Analysis Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 144

Revision History

Date Version Description Author

30/11/2010 1.0 Analysis Model of the project IT-4th Year, Group-06
Apoorv Shrivastava
Minakshi Gupta
Pulkit Verma
Udayan Gupta

Smart Analyzer Version: 1.0
Analysis Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 145

Table of Contents

1. Introduction 146

2. Analysis Model 147

Smart Analyzer Version: 1.0
Analysis Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 146

1. Introduction

An object model describing the realization of use cases, and which serves as an abstraction of the
Artifact: Design Model. The Analysis Model contains the results of use case analysis, instances
of the Artifact: Analysis Class

The analysis model contains the analysis classes and any associated artifacts. The analysis model
may be a temporary artifact, as it is in the case where it evolves into a design model, or it may
continue to live on through some or all of the project, and perhaps beyond, serving as a
conceptual overview of the system.

The Analysis Model is created in the Elaboration phase, and is updated in the Construction Phase
as the structure of the model is updated.

There are three kinds of classes in the analysis model (see Figure below):

 Boundary class
 Control class
 Entity class

Boundary Control Entity

Figure: Analysis model classes

 Boundary class

A boundary class is a class used to model interaction between the system's surroundings and
its inner workings. Such interaction involves transforming and translating events and noting
changes in the system presentation (such as the interface). Common boundary classes include
windows, communication protocols, printer interfaces, sensors, and terminals.

Boundary classes model the parts of the system that depend on its surroundings. Entity
classes and control classes model the parts that are independent of the system's surroundings.

 Control class

A control class is a class used to model control behavior specific to one or a few use cases. It
coordinates between the boundary class and an entity class or other components. It contains
the logic to invoke appropriate components to complete the path. Control classes can
contribute to understanding the system because they represent the dynamics of the system,
handling the main tasks and control flows

Smart Analyzer Version: 1.0
Analysis Model Date: 30/11/2010

 IT 4th Year, Group-06 Page 147

 Entity class

An entity class is a class used to model information and associated behavior that must be
stored. Entity objects (instances of entity classes) are used to hold and update information
about some phenomenon, such as an event, a person, or some real-life object. They are
usually persistent, having attributes and relationships needed for a long period, sometimes for
the life of the system.

2. Analysis Model

proxy server

analyze bandwidth
usage

analyse processing
time

analyse by domain

analyze user traffic

change view

0..1

0..1<<communicate>>

0..1

0..1

<<communicate>>

0..1

0..1

<<communicate>>

0..1

0..1

<<communicate>>

0..1

0..1

<<communicate>>

0..1

0..1

<<communicate>>

0..1

0..1<<communicate>>

0..1

0..1<<communicate>>

textual view

graphical view

0..1

0..1

<<subscribe>>

0..1
0..1

<<subscribe>>

proxy server
admin

(from Use Case View)...)

	0 Smart Analyzer Front Pages
	0 Smart Analyzer Index
	1 Smart Analyzer Problem Definition
	2 Smart Analyzer Vision
	3 Smart Analyzer Glossary
	4 Smart Analyzer Requirements Management Plan
	5 Smart Analyzer Software Requirements
	6 Smart Analyzer Software Requirements Specificaton
	7 Smart Analyzer Stakeholder Requests
	8 Smart Analyzer Story Board
	9 Smart Analyzer Supplementary Specification
	10 Smart Analyzer Use Case Model
	11 Smart Analyzer Iteration Plan
	12 Smart Analyzer Software Architecture document
	13 Smart Analyzer Risk List
	14 Smart Analyzer Analysis Classes
	15 Smart Analyzer Analysis Model

