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Motivation: Learn Environment Dynamics Efficiently

e Stream of tasks not known in advance

* Unknown, non-stationary environment
dynamics (action models)

* Limited budget per task

Actively Conduct Experiments to
Learn Environment Dynamics Efficiently

Task 1: Deliver goods from warehouse to lab
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Task 2: Deliver goods to the factory
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Problem Setting

Setting Objective
* A stream of tasks My, ..., M,, with * Maximize #tasks completed within a
- different initial states and goals fixed budget.

* different state/action spaces
* Need to adapt fast (minimize adaptive

, . delay), and compute good solutions
A simulator whose transition (minimize regret).

function changes in an arbitrary
Best Possible Expected Reward

fashion at unknown intervals. 4
Oracle
;
©
. ) @ Vanilla MBRL
* Reward for reaching a goal is +1 § (Model-based
. . Reinforcement
and is O otherwise. S Adaptive - Leaming)
o :  delay '
< — Pre-novelty = i « Post-novelty =

Number of Steps —

Image Source: J. Balloch et al., NovGrid: A Flexible Grid World for Evaluating Agent Response to Novelty, AAAI'22 Spring Symposium on Designing Al for Open Worlds



Research Questions



Ql

Can we develop a
method to conduct
experiments in the
environment actively?




Q2

Can the exploration
be more deliberative
to learn more about
the environment?




Q3

Would it be useful
to learn a STRIPS-
like model to direct
exploration?

Is it even feasible?



Our Solution:
Continual Learning and Planning (CLaP)



Challenges in the Learning and Planning Paradigm

1. How do we generate sample-efficient strategies for learning?
* Need to explore the state space
* Need to be systematic

2. lIslearning a full model worth it?
* Might learn irrelevant actions wrt the current task.
* Non-stationarity might waster a lot of the computational effort.



Continual Learning and
Planning (CLaP)

Algorithm 1: Continual Learning and Planning

Input : RMDP M, Simulator A, Simulator Budget A s,
Learned Model M7, Horizon H, Sampling Count
7, Threshold 6, Failure Threshold
Output: M?
1 s<80;h+<0;f«0
2 7 < modelBasedSolver(S, A, so, g, M, R, v, H)
3 while |A| < As do
if f > B or unreachableGoal(so, g, M?, ) then
| explore(MT, A)
if needsLearning(M) then
MT « learnModel(A, M)
7 + modelBasedSolver(S, A, so, g, M", R, v, H)
a < m(s)
s’ «+ A(s,a)
h+<h+1
if (s,a,s’) = M then
| M+« goodnessOfFitTest(s, a,s’, A, M", 6, Freq)
else
\_MT <addInconsistentPredicates(s, a, s’, MT)

if s = g or h > H then
| s s0; f« f+1iffseg

else
Ls — s

20 return MT




Continual Learning and Planning (CLaP)

Task

Stochastic
Planner

= EXperiment
N\ Generator

g:ll

Simulator
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Experiment Generation using Active Querying

* Automated query generation to help
fixeach (+/-/0) to a correct form.

Initial State

(empty-arm) pick-item (tablel soda-can)
(robot-at tablel)

(at tablel soda-can) e
pick-item (tablel soda-can)

(holding soda-can) move-to (dish-washer)

move-to (dish-washer)

(robot-at dish-washer)

Policy: Generated Autonomously
by Reduction to Non-Deterministic
Planning

This process monotonically improves
the learned PPDDL model

[Verma, Karia, Srivastava; NeurlPS ‘23]

(:action open-door
:parameters (?11)
:precondition (and

(+/-/0) (has_key)

(+/-/0) (door_open)

(+/-/0) (door_adjacent 211)
(+/-/0) (player_at 211))

:effect (probabilistic

0.xx (and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/®) (door_adjacent ?11)
(+/-/0) (player_at 211))
0.yy (and
(+/-/0) (has_key)
(+/-/0) (door_open)
(+/-/0) (door_adjacent ?11)
(+/-/0) (player_at 211)))
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Continual Learning and Planning (CLaP)

Task

Stochastic
Planner
Experiment
Generator

!

Goodness
— .

>

g:l

Simulator



Empirical Evaluation



Setup

* 4 benchmark domains with 5 tasks
each
* Tireworld
* ExplodingBlocks
* FirstResponders
* Elevators

* Changing action transitions, initial
state, and goal for each task

* Limited simulator budget per task

Baselines

Oracle
Knows precisely when each novelty is
introduced.

Q-Learning

Vanilla Q-Learning that has no
information about novelty.

Adaptive-QACE
Modification of QACE to incorporate
differential learning.

[Verma, Karia, Srivastava; NeurlPS ‘23]
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CLaP’s Performance Comparative to Oracle
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CLaP Few Shot Transfers in Non-Stationary Settings
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Same Trends Across All Domains
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Theoretical Guarantee: Locally Convergent Learning

Theorem 1. Let M be an RMDP with a series of transi-
tion system changes 01, ...,0, at timesteps ti,...,t, im-
plemented using a simulator A, then during each stationary
epoch between t; and t;11 CLaP performs locally conver-
gent model learning.

* Between each consecutive stage, ClaP’s model learning is locally
convergent.

* Locally Convergent: The model keeps getting better.
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Conclusions and Future Work

* CLaP is a sample-efficient method for solving tasks under
non-stationarity

* If we use some resources for experiment design, that makes

up for the costs by increasing efficiency
Opirey EI
’ I I I
1

Cf‘ amnmga

J.v“tl [

Future Directions
* Include information about the future goal(s)

* Include priors on the transition function change
when available
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