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Motivation: Learn Environment Dynamics Efficiently 
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• Stream of tasks not known in advance

• Unknown, non-stationary environment 
dynamics (action models)

• Limited budget per task

Lab

Task 1: Deliver goods from warehouse to lab

Warehouse

Task 2: Deliver goods to the factory

Fa
ct
or
y

Lab Warehouse

Starts raining:
Chance of 
hydroplaning increases

Actively Conduct Experiments to
Learn Environment Dynamics Efficiently 



Objective
• Maximize #tasks completed within a 

fixed budget.

• Need to adapt fast (minimize adaptive 
delay), and compute good solutions 
(minimize regret).

Best Possible Expected Reward

(Model-based 
Reinforcement 
Learning)

Problem Setting

Setting
• A stream of tasks 𝑀!, … ,𝑀" with 
• different initial states and goals
• different state/action spaces

• A simulator whose transition 
function changes in an arbitrary 
fashion at unknown intervals. 

• Reward for reaching a goal is +1 
and is 0 otherwise.

3Image Source: J. Balloch et al., NovGrid: A Flexible Grid World for Evaluating Agent Response to Novelty, AAAI’22 Spring Symposium on Designing AI for Open Worlds 



Research Questions
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Can we develop a 
method to conduct 
experiments in the 
environment actively?

Q1
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Q1 Q2
Can the exploration 
be more deliberative 
to learn more about 
the environment?

Can we develop a 
method to conduct 
experiments in the 
environment actively?
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Q1
Can the exploration 
be more deliberative 
to learn more about 
the environment?

Q2 Q3
Would it be useful 
to learn a STRIPS-
like model to direct 
exploration? 

Is it even feasible?

Can we develop a 
method to conduct 
experiments in the 
environment actively?



Our Solution:
Continual Learning and Planning (CLaP)



Challenges in the Learning and Planning Paradigm

1. How do we generate sample-efficient strategies for learning?
• Need to explore the state space
• Need to be systematic

2. Is learning a full model worth it?
• Might learn irrelevant actions wrt the current task.
• Non-stationarity might waster a lot of the computational effort.
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Continual Learning and 
Planning (CLaP)



Continual Learning and Planning (CLaP)

11

Model

Stochastic 
Planner

Simulator

Experiment 
Generator

Task



Experiment Generation using Active Querying
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(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (probabilistic 
    0.xx (and 
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1))
    0.yy (and
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1)))

• Automated query generation to help 
fix each (+/-/∅) to a correct form.

[Verma, Karia, Srivastava; NeurIPS ‘23] 

pick-item (table1 soda-can) 

pick-item (table1 soda-can) 

(holding soda-can) move-to (dish-washer) 

move-to (dish-washer) 

(empty-arm)
(robot-at table1)

(at table1 soda-can)

(robot-at dish-washer)

Initial State

Policy: Generated Autonomously 
by Reduction to Non-Deterministic 

Planning

This process monotonically improves 
the learned PPDDL model



Continual Learning and Planning (CLaP)
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Model
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Planner

Simulator

Goodness 
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Generator

Task



Empirical Evaluation



Baselines
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Knows precisely when each novelty is 
introduced.

Vanilla Q-Learning that has no 
information about novelty.

Modification of QACE to incorporate 
differential learning. 

Q-Learning

Adaptive-QACE

Oracle

Setup

• 4 benchmark domains with 5 tasks 
each
• Tireworld
• ExplodingBlocks
• FirstResponders
• Elevators

• Changing action transitions, initial 
state, and goal for each task 

• Limited simulator budget per task [Verma, Karia, Srivastava; NeurIPS ‘23] 



CLaP’s Performance Comparative to Oracle

Differential Learning
(CLaP) : Ours

Relearning: 
Adaptive QACE

Q-Learning
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x Oracle
(Upper bound on 
performance)
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CLaP Few Shot Transfers in Non-Stationary Settings
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Same Trends Across All Domains
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Theoretical Guarantee: Locally Convergent Learning

• Between each consecutive stage, ClaP’s model learning is locally 
convergent.

• Locally Convergent: The model keeps getting better.
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CLaP



• CLaP is a sample-efficient method for solving tasks under 
non-stationarity
• If we use some resources for experiment design, that makes

up for the costs by increasing efficiency

Future Directions
• Include information about the future goal(s)
• Include priors on the transition function change 

when available

Conclusions and Future Work
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