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Abstract

Understanding how robots plan and execute tasks is crucial
in today’s world, where they are becoming more prevalent in
our daily lives. However, teaching non-experts, such as K-12
students, the complexities of robot planning can be challeng-
ing. This work presents an open-source platform, JEDAI.Ed,
that simplifies the process using a visual interface that ab-
stracts the details of various planning processes that robots
use for performing complex mobile manipulation tasks. Us-
ing principles developed in the field of explainable AI, this in-
tuitive platform enables students to use a high-level intuitive
instruction set to perform complex tasks, visualize them on
an in-built simulator, and to obtain helpful hints and natural
language explanations for errors. Finally, JEDAI.Ed, includes
an adaptive curriculum generation method that provides stu-
dents with customized learning ramps. This platform’s effi-
cacy was tested through a user study with university students
who had little to no computer science background. Our results
show that JEDAI.Ed is highly effective in increasing student
engagement, teaching robotics programming, and decreasing
the time need to solve tasks as compared to baselines.

1 Motivation
Recent advances in Artificial Intelligence (AI) have enabled
the deployment of programmable AI robots that can assist
humans in a myriad of tasks. However, such advances will
have limited utility and scope if users need to have advanced
technical knowledge to use them safely and productively.
For instance, a mechanical arm robot that can assist humans
in assembling different types of components will have lim-
ited utility if the operator is unable to understand what it can
do, and cannot effectively re-task it to help with new designs.

This paper aims to develop new methods that will allow
educators and AI system manufacturers to introduce users
to AI systems on the fly, i.e., without requiring advanced de-
grees in Computer Science/AI as prerequisites. These meth-
ods allow for introducing robotics programming to novices.
Our contribution We accomplish our overall objective by
introducing JEDAI.Ed, a web application that abstracts the
intricacies of robotics programming and exposes the user

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to an easy-to-use interface to the robot. JEDAI.Ed incor-
porates several new features that enable its use in educa-
tional settings. Firstly, JEDAI.Ed provides an adaptive cur-
riculum design module that can automatically generate prob-
lems catered to a particular user by keeping track of the
user’s performance. Our system identifies multiple causes of
failure and explains them. Finally, JEDAI.Ed utilizes large
language models (LLMs) not to discover information but to
express factual information and justifications computed us-
ing well-defined reasoning processes thereby ensuring the
reliability of information being provided.

We implemented JEDAI.Ed by using the existing JEDAI
system (Shah et al. 2022) as a baseline. While the core
JEDAI system provides a good foundation for development,
it has not been developed or evaluated with the components
necessary for introductory AI education. E.g., it indirectly
requires the users to have some knowledge of robot simula-
tors to operate (see Table 1 for more differences). Our contri-
butions (mentioned above), along with several other quality-
of-life improvements, such as an improved user-interface,
etc., make JEDAI.Ed a significant improvement over JEDAI.

We showcase the usefulness of JEDAI.Ed through a user
study designed to assess and evaluate its utility and compare
it to JEDAI. Our results show that JEDAI.Ed makes robots
easy to use and piques curiosity about AI systems. Further-
more, there is a 20% improvement in solution times and
significantly higher positive sentiment compared to JEDAI.
Furthermore, we have also piloted JEDAI.Ed in two high-
school classes and have received positive feedback showcas-
ing the usefulness of JEDAI.Ed across different age groups.

2 Background
In this section, we give a background of key concepts that
allow users to program robots for accomplishing tasks.
Running example Consider a robot that is deployed at a
coffee shop to help with its day-to-day operations. Depend-
ing upon the day’s priorities, the owner may want to program
the robot to assist with different tasks such as delivering cof-
fee to customers or washing the cups, etc. To effectively as-
sist the owner, the robot must be able to be “given” tasks (or
instructions) by the owner and autonomously perform them.
Planning Robots (and humans) often accomplish tasks by
computing a fixed sequence of instructions and then execut-
ing them sequentially. These sequences are known as plans,
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Figure 1: A screenshot (best viewed in color) of the JEDAI.Ed user interface (UI) (zoomed in and enhanced for clarity). The annotated circles
describe the different sections of the UI (described in Sec. 3.2). The extended version (Karia et al. 2024) includes unmodified screenshots and
the code repository (https://github.com/AAIR-lab/jedai) contains a video walkthrough of the JEDAI.Ed interface.

planning is the process of computing such plans, and algo-
rithms that do planning are called planners. Planners take an
input task and instruction set and output a plan (consisting of
instructions from the instruction set) that solves the task. A
valid plan for a task is a sequence of semantically consistent
instructions starting from the initial state.
Robot instructions and motion planning Robots can only
execute a specific type of low-level plan known as a motion
plan. This plan specifies a sequence of movements for each
joint of the robot and is obtained using motion planning.
E.g., the Fetch robot in Fig. 1e has an arm with 8 joints:
θ1, . . . , θ8. A motion plan, ⟨[θ11, . . . , θ18], . . . , [θn1 , . . . , θn8 ]⟩,
that uses the robot to accomplish an example task of pick-
ing up a coffee cup from the counter would contain a se-
quence of low-level instructions [θi1, . . . , θ

i
k] that contain nu-

meric values, θk ∈ R, for all of its joints. Computing such
low-level instructions needs robot-specific knowledge and
requires complex algebraic arithmetic to compute a motion
plan that provides smooth (and safe) motion. These con-
straints make motion planning quite difficult for humans.
Human instructions and plans Contrary to robots, hu-
mans typically accomplish tasks by following instructions
at a higher level of abstraction than robots. E.g., to accom-
plish the same task described in the preceding paragraph,
a human often computes a high-level plan, ⟨Go to the
counter, Pick up the coffee cup⟩, consisting of
high-level instructions. Humans can find (and execute) high-
level plans for complex tasks fairly easily, however, robots
can not use such plans directly to accomplish tasks.
Hierarchical planning Given the difficulty of motion
planning, it is easy to see that programmable robots must
accept high-level instructions to be usable by humans. In
this work, we focus on human-in-the-loop (HITL) robot pro-
gramming where high-level plans are provided by a human
and a hierarchical planner converts such plans into a se-
quence of motion plans that the robot can execute.

Explaining Failures This tiered approach to HITL
robotics programming introduces some new hurdles. One
key challenge is that high-level plans might not be success-
fully compiled into low-level plans. E.g., a high-level plan
⟨Pick up the coffee cup⟩ cannot be compiled into
a low-level plan for a single-arm robot if it is already holding
something else. When such failures occur, it is imperative
that the robot appropriately informs the user of the failure
in high-level terms that the user can easily understand. Ex-
plaining why a failure occurred can allow a user to correct
(or modify) the high-level instructions so that the desired be-
havior can be achieved. E.g., an explanation of the form “I
(the robot) cannot pick up the coffee cup because I am cur-
rently holding a water bottle” allows the user to (a) identify
why the robot could not accomplish the task, and (b) modify
their instructions so that the robot can accomplish it.

3 The JEDAI.Ed Platform
We aim to develop a platform that makes robotics program-
ming accessible to a wide spectrum of users and use cases.
Thus, we have taken several design considerations – de-
scribed in the extended version (Karia et al. 2024) – to
develop JEDAI.Ed, an open source1 pedagogical tool that
brings robotics programming into the hands of novice users.
JEDAI.Ed is usable by educators seeking to teach classes on
AI, by hobbyists who are interested in robotics, etc.

The next section discusses JEDAI.Ed’s features that make
it an ideal pedagogical platform for robotics programming
followed by an example use case of JEDAI.Ed for program-
ming a robot on a task from our user study.

3.1 Learning Objectives
The objective for JEDAI.Ed is to facilitate the understanding
of reasoning and quickly provide high-level instructions to

1Source code is available at: https://github.com/AAIR-lab/jedai



Desiderata JEDAI.Ed JEDAI
Open source ✔ ✔

Minimal system requirements ✔ ✔
Integrated simulation ✔ ✔

Intuitive user interface ✔ ✗
Adaptive problem generation ✔ ✗

Multi-failure explanations ✔ ✗
LLM-powered NL explanations ✔ ✗

Table 1: A feature comparison between JEDAI.Ed and JEDAI. See
the extended version (Karia et al. 2024) for a detailed description.

robots to perform tasks. Furthermore, our platform explains
failures and thus allows users to learn more about the capa-
bilities of the robot. Our focus ties well with the objective
of the AI4K12 Big Idea 2 – Representation & Reasoning2

which requires users to be able to reason about how their
instructions can change the state of the world and use this
knowledge to compute to plan.

3.2 System Overview
The JEDAI.Ed architecture, illustrated in Fig. 2, is modular
in design allowing for easy customization (discussed in the
extended version). Fig. 1 shows the overall JEDAI.Ed inter-
face that is presented to users. The JEDAI.Ed user interface
module (UI) is the front-end that users interact with and can
be run on any modern web-browser making it widely acces-
sible. The back-end can be hosted on any server.

User Interface (UI) The JEDAI.Ed UI follows the single-
page application (SPA) design methodology providing the
user with all pertinent information on a single page thereby
reducing navigation fatigue. Users are presented with a play-
ground area where they can utilize the intuitive, high-level
instruction sets (Fig. 1k) to create plans via Blockly (Google
2018) – a block-based programming language. For exam-
ple, the Move action in Fig. 1m represents the high-level in-
struction ‘Move the robot fetch from the starting point to the
counter’. Finally, JEDAI.Ed provides feedback via different
modalities (e.g., an audio click when blocks are connected,
changing the color of invalid blocks to red, etc.).

Low-Level/Motion Planning Module (MPM) JEDAI.Ed
provides an integrated low-level planner, ATAM (Shah et al.
2020) and simulator, OpenRAVE (Diankov 2010), for exe-
cuting user-provided plans on a robot using the UI (Fig. 1d).
ATAM converts high-level plans to low-level plans that can
be executed and visualized on the UI via the simulator
(Fig. 1e). This execution is a close approximation of the real-
world. The motion planning process is streamed in real-time
providing informative insights about it. We include one such
execution in the video walkthrough that is accessible via the
code repository.

User Assistance Module (UAM) It is well-known that it-
eration and improvement are part of the learning process and

2https://ai4k12.org/big-idea-2-overview/
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Figure 2: The JEDAI.Ed architecture (described in Sec. 3.2).

learning from failures can be expected in an educational set-
ting (Jackson et al. 2022). JEDAI.Ed uses advances in ex-
plainable AI to automatically generate explanations that al-
low users to (a) learn why their plans are failing, (b) better
understand the robot’s limitations and capabilities, and (c)
fix their plans so that the robot can accomplish the tasks.
Explanations: Our system uses HELM (Sreedharan, Srivas-
tava, and Kambhampati 2018) and VAL (Howey, Long, and
Fox 2004) for generating explanations whenever failures oc-
cur in the user-submitted high-level plan. Once a user con-
nects any block, the current plan is routed through these
components to identify whether the plan is valid. An invalid
plan is passed to HELM and VAL to generate formal expla-
nations which are then translated to NL via templates and
LLMs and displayed to the user.
Natural language module (NLM) This module processes
messages from all components, converting them to a human-
readable message via hand-coded NL templates and/or
LLMs. We use well-defined reasoning processes to avoid
hallucinations in LLMs by utilizing LLMs primarily as
translators and not as reasoners. In our experiments, we used
GPT-3.5 Turbo (OpenAI 2022). However, any LLM can be
easily configured. A detailed description of our prompts and
NL templates is available in the extended version.

Ethical Considerations and Guardrails: We limit the po-
tential of LLMs in generating offensive content by (a) using
fixed prompts and not free-form chat mode, and (b) using
LLMs that are compliant with the OpenAI content policy
which dictates the types of responses the LLM can generate.
JEDAI.Ed does not include any user-identifiable information
in requests to the LLMs nor is such information required for
using any feature of JEDAI.Ed.

Curriculum Design Module (CDM) JEDAI.Ed includes
several environments such as Cafeworld, Towers of Hanoi,
etc. that are widely used in AI coursework (Fig. 3). These en-
vironments provide a diverse mix of tasks and robots that in-
structors can use as activities for teaching AI planning. Fur-
thermore, JEDAI.Ed also includes a problem generator that
can generate new problems on-the-fly by utilizing breadth-
first search (BFS) (Russell and Norvig 2020) and allow users
to explore the capabilities of the robot on their own.

Adaptive Problem Generation: Our platform develops an
adaptive problem generation module to help novices under-



Algorithm 1: Adaptive User-Performance Tracking
Input: user-performance map Cu, action a, hint h
Output: Updated user-performance map Cu

1 s← getCurrentState()
2 if canExecuteAction(s, a) and not h then

// User knows action: Cost ↑
3 Cu[a]← Cu[a] + 1

4 else
// User does not know action: Cost ↓

5 Cu[a]← Cu[a]− 1

stand the capabilities of the robot in a systematic and di-
rected fashion. We do so by keeping track of the user’s per-
formance as they solve problems and generating new prob-
lems (in the same environment) that focus on aspects that
the user has had difficulty with. For example, actions that
the user has made mistakes on. The next problem focuses on
generating problems that only require the user to use the dif-
ficult action thereby reducing the overall cognitive load and
making learning easier (Moos and Pitton 2014). Our over-
all process for doing so is indicated in Alg. 1. Intuitively, we
increase the cost of actions that the user performs well at
and decrease the cost of actions that the user has difficulty
with. We then use BFS to generate a new problem such that
at least one difficult action is covered. The random problem
generator described earlier also performs BFS but assumes
all actions have equal costs whereas with adaptive BFS, ac-
tion costs are different and consequently problems generated
are not random but directed. This method also works well in
a coldstart setting since it initially assumes that the user is
not proficient at any action (i.e., ∀a Cu[a] = 0). Additional
details of this process are included in the extended version.
Walkthrough: Using JEDAI.Ed for a programmable
single-arm, mobile robot We now describe a typical ses-
sion of JEDAI.Ed that introduces the functionalities of a mo-
bile manipulator like Fetch (Fig. 1e) that is intended to be
used in a coffee shop based on the running example (Sec. 2).
We also used this in our user-study and the walkthrough be-
low describes the typical processes involved in a session.

First, the educator installs the JEDAI.Ed system on a ma-
chine. Next, the educator uses the CDM to select an appro-
priate environment for the students (e.g., Coffee Shop). The
educator then generates (or selects preset) tasks for the stu-
dent to accomplish (CDM). Alternatively, the educator could
instruct the students to use the adaptive problem generator
and then solve a test task. The student accesses JEDAI.Ed
on a web browser and begins learning.

The UI presents the user with the necessary information
such as the task description and goal (Fig. 1g), available in-
struction set (Fig. 1k), and a simulator window (Fig. 1e).
The goal is provided using textual and visual descriptions.
A Help button (Fig. 1b) provides useful descriptions about
the interface and is available to the user at all times.

The user then uses the instruction sets along with intu-
itive knowledge to create a plan of high-level instructions by
dragging-and-dropping Blockly blocks and connecting them

Figure 3: Example environments, Coffee Shop (left) and Keva
(right), included with JEDAI.Ed. These environments feature sam-
ple tasks and problem generators for use as activities. More envi-
ronments and their details are included in the extended version.

to the Start block (Fig. 1m). An audible click lets the user
know that the block snapped to another block.

Every connected block is checked for validity in real-
time and explanations (UAM) are provided if the user’s
current plan contains any invalid actions (Fig. 1h). E.g.,
the explanation shown in Fig. 1h explains that the in-
struction ‘Place the blue can at the counter
using gripper of the Fetch’ failed because the
robot was not holding the blue can. The user may also check
the states resulting from the execution of their current plan
in the state display area (Fig. 1f ). The user may also request
a hint (UAM, Fig. 1a, elaborated in the extended version)
that returns a high-level instruction as a pop-up message.

Once a valid high-level plan (irrespective of whether it
accomplishes the goal or not) is achieved (Fig. 1g), the “Ex-
ecute on Robot” (Fig. 1d) button is activated and the user
may submit their plan to be executed on the robot. The plan-
ning process and real-time execution of the low-level plan
are streamed by the simulator (MPM, Fig. 1c).

4 Empirical Evaluation
We developed JEDAI.Ed to expose novice users to AI and
robotics. We conducted a user study to evaluate if JEDAI.Ed
achieves the goal by evaluating the following hypotheses:
H1 (Increased curiosity): JEDAI.Ed increases the curios-
ity of users to learn more about robotics and AI.
H2 (Easier programming): JEDAI.Ed makes it easy for
users to provide instructions to robots.
H3 (Improved understanding): JEDAI.Ed improves user
understanding w.r.t. the limitations/capabilities of a robot.
H4 (Helpful explanations): JEDAI.Ed’s provided expla-
nations help users understand (and fix) errors in their plans.
H5 (Intuitive UI): JEDAI.Ed’s UI is intuitive and easy to
use requiring little to no study facilitator intervention.
H6 (Programming confidence): JEDAI.Ed increases
users confidence in instructing robots to accomplish tasks.
H7 (Faster solving): JEDAI.Ed allows users to solve tasks
faster than JEDAI.

To evaluate the validity of these hypotheses, we designed
a user study for evaluating JEDAI.Ed and comparing it with
JEDAI. We present the study methodology below.

4.1 User Study Setup
We hired 43 university students with no background in com-
puter science as participants for an IRB-approved user study.
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µ± σ w.r.t. 1-sample t-test (µ1
0 = 2)

Hypothesis Post Survey Question used for Testing Hypothesis JEDAI.Ed JEDAI
H1: Increased
curiosity

Q5: As compared to before participating, how much has your
curiosity increased to learn more about AI systems and robots? 3.47± 0.60 3.00 ± 0.89

H2: Easier
programming

Q7: Do you agree that the JEDAI.Ed system made it easier for
you to provide instructions to a robot for performing tasks? 3.47 ± 0.60 3.04 ± 0.80

H3: Improved
understanding

Q8: Do you agree that JEDAI.Ed helps improve the understand-
ing of the robot’s limitations and capabilities? 3.23 ± 0.62 2.90 ± 0.76

H4: Helpful
explanations

Q2: How helpful were the explanations that were given for the
cause of an error? 3.38 ± 0.86 2.42 ± 1.20

H5: Intuitive UI Q4: How intuitive was the interface? 2.71 ± 0.71 2.19 ± 0.87
H6: Programming
confidence

Q6: How well do you think you now understand how one can
use an AI system to make a plan for a robot to perform a task? 2.85 ± 0.79 2.33 ± 1.06

Table 2: JEDAI.Ed user study results (n = 42) used to validate our hypotheses. The table provides a short description of the target hypothesis,
the corresponding questions used to validate it, and the one-sample t-test results. All results are statistically significant (p < 0.05) except for
entries in bold; red. Comprehensive statistical data is available in the extended version (Karia et al. 2024)

We discarded 1 incomplete/invalid response, resulting in a
sample size of 42. There were 23 non-STEM participants.
We divided the participants into two control groups. The first
(second) control group was assigned the JEDAI.Ed (JEDAI)
system for use in the study. The study lasted 45 minutes, was
conducted in-person, and had four phases:
Pre-survey phase (8 min): Participants were presented with
an introductory video about AI. Next, to acquire a detailed
understanding of the participant’s background, interests in
AI, level of awareness and engagement with AI technolo-
gies, we employed a pre-survey questionnaire.
Training phase (12 min): This phase was intended to get
users familiarized with the system and tasks. Communi-
cation with the study facilitator was allowed. Participants
were presented sequentially with three tasks of the Coffee
shop environment (Sec. 2) each of which involved utilizing
a Fetch robot to deliver cans to tables. JEDAI.Ed used the
adaptive problem generation algorithm to generate training

tasks. We used randomly generated training tasks for JEDAI.
We ensured that all generated training tasks needed 50%
fewer instructions to accomplish than the test task.
Test phase (12 min): The participants solved a test task dur-
ing this phase. The test task was much harder than the train-
ing tasks and required users to deliver multiple cans (opti-
mally using 16 high-level instructions). No communication
with the study facilitator was allowed during this phase. The
participants were then asked to complete a post-survey ques-
tionnaire whose questions were designed to obtain the par-
ticipant’s opinion on the platform they interacted with and to
determine if their interest and curiosity had increased post-
use. We also collected system logs for analytics data.
Sentiment change phase (13 min): This phase is intended
to analyze the sentiment change after interacting with both
JEDAI.Ed and JEDAI. In this phase, participants who inter-
acted with JEDAI.Ed (JEDAI) in the previous phases were
asked to interact freely with JEDAI (JEDAI.Ed). They were
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once again asked to answer a post-survey questionnaire.
This questionnaire was the same as that of the test phase
but they could not see the previous responses.
Questionnaire methodology All responses to the ques-
tions used the Likert Scale (Likert 1932) to provide a more
intricate depiction compared to binary responses.
Hypothesis testing Our Likert Scale data was converted
to values from 0 to 4 with 0 (4) being the most negative
(positive) response and 2 being neutral. We used the p-value
obtained by using the one-sample t-test (Ross and Willson
2017) to test the statistical significance. Within a control
group, we assumed the data to be two-tailed for the ques-
tions used to validate the hypotheses and used the hypothe-
sis of no difference, i.e., µ1

0 = 2 (balanced Likert scales), as
the null hypothesis. Thus, for statistically significant results
µ1
0 > 2 denotes positive sentiment and vice versa.

4.2 Study Results
Fig. 4 and Table. 2 show our results, the survey questions
used to analyze the hypotheses, and data from the statisti-
cal tests. All data was statistically significant for JEDAI.Ed.
Moreover, JEDAI.Ed’s µ ≥ 2.7 showcases an improved,
positive experience. We analyze our results below.
H1 (Increasing curiosity): Fig. 4 shows that after interact-
ing with JEDAI.Ed, user curiosity is 95% positive. This is far
greater than JEDAI, whose positive user sentiment is 71%.
H2, H3, and H6: Our pre-survey results (Fig. 4, pie) show
that before using JEDAI.Ed, 55% of users believed that
robot programming was not easy.
H2 (Easier Programming): 95% of users thought that
JEDAI.Ed made it easier to program robots. In contrast,
JEDAI only managed to increase positive sentiment to 71%.
H3 (Improved understanding), H6 (Programming confi-
dence): After interacting with JEDAI.Ed, 90% of users think

100 200 300 400 500 600
Time (s) Taken to Solve Test Problem

JEDAI

JEDAI.Ed

JEDAI.Ed
(No Adaptive)

20% Improvement
for JEDAI.Ed

Figure 6: Violin plots that indicate the time needed to solve the
test task. • (×) represents the mean (median).

that they better understand the robot’s capabilities, and 71%
of users were confident that they could program robots.
H4 (Helpful explanations): Users were extremely posi-
tive in their feedback w.r.t. JEDAI.Ed provided explanations
(≈86% of users thought that the explanations were helpful).
As compared to JEDAI, JEDAI.Ed provides both brief and
LLM-based descriptive explanations that better explain why
a failure occured. Thus, JEDAI explanations were rated sig-
nificantly lower and also had a 25% negative sentiment.
H5 (Intuitive interface): Most users using JEDAI.Ed were
able to navigate the interface without any help. JEDAI.Ed
is modern and includes many quality-of-life features such
as the ability to minimize blocks, etc. which are lacking in
JEDAI. Fig. 4 shows that 66% of users found JEDAI.Ed’s UI
intuitive as compared to JEDAI which had only 28% positive
sentiment and had a 19% negative sentiment.
H7 (Faster solving): Fig. 6 shows the distribution of times
required to solve the tesk task. JEDAI.Ed users were able to
solve the test task in 235 seconds which is 20% faster than
JEDAI. There were 4 (3) users for JEDAI.Ed (JEDAI) that
were not able to solve the test task. One additional JEDAI.Ed
user encountered an internal error requiring a system restart
thus resulting in them not being counted.

One key advantage of JEDAI.Ed is the adaptive problem
generation that appropriately adjusts the task difficulty to fa-
cilitate faster learning. JEDAI.Ed also informs users of in-
valid actions and explains them in real-time as compared to
JEDAI where users need to submit plans to get any feedback.

Ablation Study To further investigate the impact of adap-
tive problem generation, we conducted an ablation study
by recruiting an additional 19 students with similar back-
grounds. These students were administered the same study
using JEDAI.Ed. The only change we made was to use ran-
domly generated problems in the training phase instead of
the adaptive problem-generation method employed earlier.
Three users in this new study were unable to solve the test
task. Our results in Fig. 6 show that without the adaptive
problem generation, the training tasks are much harder for
the students and consequently they cannot perform as well
on the test task. We attribute the similarities between the
solve times w.r.t. JEDAI to the fact that JEDAI also explains
failures and thus provides similar feedback.

Improved Sentiment over JEDAI Fig. 5 shows that users
have a positive (negative) sentiment change across all met-
rics when interacting with JEDAI (JEDAI.Ed) first and then
experiencing JEDAI.Ed (JEDAI). These observations, along



with the rest of our analysis, shows that JEDAI.Ed offers
several significant improvements over JEDAI resulting in an
overall enhanced user-experience when using JEDAI.Ed as
a platform for robotics programming.

4.3 Pilot Program on High School Students
We also demonstrated JEDAI.Ed across 6 sessions at three
different high schools to a total of ≈240 students. Each ses-
sion lasted 60 minutes and students were asked to complete
tasks across 3 different environments (Coffee Shop, Keva
π–Planks, and Towers of Hanoi). Most students were able
to complete all tasks without any supervision. Pictures from
some of our visits are included in Fig. 7. We also solicited
feedback from the program coordinator(s) who mentioned:

“They found it very user-friendly. Thank you again for the
visit and looking forward to seeing more in the future.”

4.4 Improvement Opportunities
We now discuss what didn’t work, and improvement oppor-
tunities based on feedback from the user study and our pilot.

For our pilot program, we hosted our system on an AWS
cloud instance to serve the students. The network latency
between the school and the server was visible in the inter-
face and caused latency issues where the video stream of the
robot executing the plan was not rendering correctly. Op-
timizing the motion planner to break down the trajectory
packets and send them piece-by-piece would provide for a
smoother experience which we are currently implementing.

Some users from had difficulty understanding that plans
begin at the Start block. They mentioned that renaming it to
Connect blocks here would improve the UI’s intuitiveness.

We observed that in its current iteration JEDAI.Ed is not
widely accessible on devices which do not employ a key-
board and mouse. We plan to improve the accessibility of
our platform by using generative AI so that users can pro-
vide plans verbally using multimodal models.

An additional feature that we are working on allows users
to use programming constructs like loops and conditionals
to form their plans. These allow for the inclusion of richer
environments with non-deterministic action semantics. Ex-
plaining failures in such programs is a challenging and ex-
citing question for future research.

5 Related Work
This work brings together several independent research di-
rections in a single platform. We discuss them here.
Visualizations in planning There are tools that help vi-
sualize the planning process to make it is easy to under-
stand for the users. Such tools include Web Planner (Mag-
naguagno et al. 2017), Planimation (Chen et al. 2019),
PDSim (De Pellegrin and Petrick 2021), vPlanSim (Roberts
et al. 2021), PlanVis (Cantareira, Canal, and Borgo 2022)
etc. These methods focus on visualizing the planning pro-
cess for users, whereas JEDAI.Ed, in addition, also helps
novices in planning on their own, executing the plans on
robots, and explaining their mistakes to them.
Robot programming interfaces CoBlox (Weintrop et al.
2018) used a similar interface for creating low-level plans

Figure 7: Engagement in JEDAI.Ed’s high school pilot program.

for robots but also requires users to provide low-level plans.
Winterer et al. (2020) analyzed the use of Blockly for pro-
gramming industrial robots. These approaches target expert
users and unlike JEDAI.Ed cannot be used by novices.
AI concepts for students Robot-VPE (Krishnamoorthy
and Kapila 2016) and Code3 (Huang and Cakmak 2017)
used a Blockly-like interface for K12 students to write pro-
grams for robots. Broll and Grover (2023) created a tool to
teach complex ML concepts to students using block-based
pre-programmed games. Maestro (Geleta et al. 2023) used
goal-based scenarios to teach students about robust AI.
Generating explanations with easy-to-understand inter-
faces There is a large body of work on generating explana-
tions for user-provided plans. Few such approaches (Grover
et al. 2020; Valmeekam et al. 2022; Brandao et al. 2021; Ku-
mar et al. 2022) use an easy-to-understand user interface and
natural language to make the explanations easily accessible
to novice users. These approaches do not integrate low-level
planning and thus cannot be used to program robots.

6 Conclusion
We introduced JEDAI.Ed, an open-source platform to in-

troduce high-level robot planning to novices. We showed
that JEDAI.Ed is an effective and intuitive platform in teach-
ing AI planning to users without a background in the sub-
ject. JEDAI.Ed significantly improves upon its predecessor
and adds several new and novel features. Adapting curricu-
lums tailored to individual users allows for more effective
learning which is evident from faster solution times on our
platform. Our results show that users prefer JEDAI.Ed over
JEDAI. Moreover, JEDAI.Ed was able to successfully en-
gage students and pique their curiosity in learning more
about AI planning. Our pilot program was highly successful
and increased the students’ confidence in robotics program-
ming. We hope to keep developing and making JEDAI.Ed
available to wider audiences.
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Ethical Statement
This work involved recruiting humans for our study. Both
our pre and post survey questionnaires went through an In-
stitutional Review Board (IRB) review process and were ap-
proved before starting the study. We opted to recruit univer-
sity students instead of using our high school pilot program
for the study due to the difficulties associated with conduct-
ing user studies involving minors. To maintain a similar level
of expertise, we ensured that students had little to no back-
ground in computer science and only allowed participants
who either (a) were not enrolled in a computer science ma-
jor, (b) did not have any significant programming experi-
ence, and (c) had not formally or informally enrolled in a
data structures or equivalent course either through a univer-
sity or an online education platform. For computer science
majors, data structures is a pre-requisite for a majority of
programming and robotics related classes. Thus, our com-
puter science majors were composed mainly of students in
their freshmen year with little to no exposure to any com-
puter science concepts. This resonates well with the demo-
graphics of our high school pilot program which was mainly
composed of students from grades 9-12.

Usage of LLMs carries the risk of providing content that
might not be relevant or might be offensive to its users.
We mitigated this by using OpenAI’s latest GPT-3.5-turbo
model (gpt-3.5-turbo-0125) which is compliant with
the OpenAI usage policy (OpenAI 2024) on content gener-
ation. LLMs are more prone to generate irrelevant or offen-
sive content when engaged in a dialogue with users. In our
case, our prompts are structured and fixed and thus are un-
likely to generate irrelevant text. Additionally, in accordance
with the company policy, GPT-3.5 has default content filters
that stop any offensive or inappropriate text from being gen-
erated and returned to be displayed in JEDAI.Ed.

Finally, with regards to user privacy, no user identifying
information was provided to GPT-3.5 or used at any point in
JEDAI.Ed and in our experiments with JEDAI.
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