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Introduction

• Language Models (LMs) have been shown to be successful in a myriad 
of  tasks
• Natural Language Translation
• Text Summarization
• Question Answering
• Named Entity Recognition
• …

• Recently, the advent of  Large Language Models (LLMs) like ChatGPT
have extended the list of  applications
• Code Generation
• Code Explanation
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Motivation

• Increasing interest in using LLMs in system synthesis/explanation
• Needs LLMs to generate/translate formal syntax (e.g. source code)

Q: Can we use LLMs for generating/interpreting formal syntax?

A: Yes, but there are several challenges in doing so!

How do you create a scalable benchmark for testing LLMs?



Key Challenges

1. What datasets to use?
• Need datasets that are not already in the training set of  LLMs
• Need datasets that can be well-characterized (e.g. complexity of  clauses)

2. How do we automatically evaluate LLMs?
• Traditionally, humans annotate ground-truth data (very expensive)
• Can we do this automatically?
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Given an input 𝑥 consisting of  a sequence of  tokens, a (large) language model, 
𝑝!(𝑥), parameterized by 𝜃, returns a sequence of  tokens 𝑦 ~ 𝑝!(𝑦|𝑥′).

• The input 𝑥 is known as a prompt (usually contains the input and question)
• The output 𝑦 is conditioned on the context window size 𝑥′

• Critical for performance (serves as short-term memory)

(Large) Language Models: (L)LMs



Formal Syntax Translation: 𝑁𝐿 → 𝑆𝐴𝑇
Given an input prompt𝑁𝐿 in natural language, 𝑁𝐿 → 𝑆𝐴𝑇 converts 
𝑁𝐿 to formal syntax 𝑆𝐴𝑇 s.t. 𝑆𝐴𝑇 accurately represents 𝑁𝐿



Formal Syntax Interpretation: 𝑆𝐴𝑇 → 𝑁𝐿
Given an input prompt 𝑆𝐴𝑇 in formal syntax, 𝑆𝐴𝑇 → 𝑁𝐿 converts 𝑆𝐴𝑇
to natural language 𝑁𝐿 s.t. 𝑁𝐿 accurately represents 𝑆𝐴𝑇



Our Contributions
We present an approach for automatic evaluation of  𝑁𝐿 ↔ 𝑆𝐴𝑇

1. Automatic, ground-truth data generation
• We generate data using the grammar of  the formal language being tested
• Formulae variables are perturbed to generate OOD data

2. Two LLM copies for automatic evaluation of  𝑁𝐿 ↔ 𝑆𝐴𝑇
• We use an encoder-decoder scheme for automatic evaluation of  𝑁𝐿 ↔ 𝑆𝐴𝑇
• No human input required in the process

3. Extensive empirical evaluation
• We present an extensive evaluation using several SOTA LLMs



Automatic Assessment of𝑁𝐿 ↔ 𝑆𝐴𝑇 using LLMs 

Given a statement 𝑓 in formal syntax, we
a) Encoding: Convert it to an NL description X using 𝑆𝐴𝑇 → 𝑁𝐿 using an LLM

b) Decoding: We use a copy of  the LLM to convert X to formal syntax 𝑓′ using
𝑁𝐿 → 𝑆𝐴𝑇

c) Verifying: We use a verifier (such as a theorem prover) to check if  𝑓 ≡ 𝑓′

Encoding Decoding Verifying



Example

TRUE

Encoding Decoding Verifying



Scalable Datasets

• Generated using language grammars
• Can be scaled up easily (without requiring human annotation) as LLM capabilities evolve

• Can be stratified easily based on type of  language produced
• Example: k-SAT propositional logic formulae



No/Minimal Human Input Needed

• Humans either not required at any point in the pipeline or trivially required
• Example: Setting up parameters of  the dataset generation etc.



Robust against Hallucinations

• Many techniques (in contrast to ours), use LLMs as a self-critique verifier

• We use well-defined reasoning processes (external verifier) for truth evaluation
• This makes our approach less susceptible to hallucinations



Experiments

• We performed an empirical evaluation with two popular forms of  formal syntax
1. Propositional logic
2. First-order logic

• We used several SOTA LLMs in our evaluation
1. ChatGPT (GPT-3.5-turbo)
2. GPT-4
3. Gemini (Pro)
4. Mistral (7B Instruct)

Our results show that LLMs are currently not suitable for deployment in formal 
specification-based tasks.



A statement or formula in propositional logic consists of  a set of  
propositions connected together with logical connectives

• Grammar: 

where 𝑥 is a proposition (e.g. 𝑥! = All men are mortal)

Example:

• We used Z3 to validate whether 𝑓! ≡ 𝑓" for two formulae: 𝑓!, 𝑓"

Propositional Logic



Prompt Engineering
• LLM performance quite often depends upon the prompt
• We ensured the efficacy of  our prompts by testing different prompts on (k, m)-

CNF (Canonical Normal Form) formulae:

(k, m)-CNF formulae are propositional logic formulae expressed as

• We tested different prompts on a dataset of  400 such formulae with 𝑘 = 3, 𝑛 =
3, and 𝑚 ∈ [3, 21] until at least one LLM had ≥ 95% accuracy on 𝑁𝐿 ↔ 𝑆𝐴𝑇
• For a given 𝑘,𝑚, the formula has 𝑘 − 1 𝑚 operators.



Dataset Generation
We used the following grammar for generating formulae:

• Similar formula sizes as those in prompt engineering step
• # of  operators used as metric for generating formulae.

• We used Z3 as the verifier for testing logical equivalence



Results: (5 runs, higher values better)

• GPT-4 outperforms other LLMs

• LLMs cannot perform 𝑁𝐿 ↔ 𝑆𝐴𝑇 satisfactorily in propositional logic



Common Failures

• One key failure was unable to 
capture the parentheses correctly

• Another was a bias from the LLMs 
knowledge based wherein it used 
symbols other than those in the 
prompt (e.g. →)

Assuming 𝑆𝐴𝑇 → 𝑁𝐿 was correct 
and a human could correctly 
decode the NL expression

• LLMs like Gemini would often 
hallucinate during this phase

𝑁𝐿 → 𝑆𝐴𝑇 failures 𝑆𝐴𝑇 → 𝑁𝐿 failures



First-order Logic (FOL)
A statement or formula in first-order logic consists of  a set of  
predicates connected together with logical connectives and quantifiers

We used a similar prompt engineering step for FOL.



Results: Randomized predicates

• Results with randomized versions of  predicates
• Eg: p1(o1) and p2(o1, o4)

• Performance of  LLMs is about 50% for small formulae.



Results: English language-based predicates

• Results with English language-based versions of  predicates
• Predicates were pulled from a vocabulary

• Slightly worse performance than randomized predicates



Results: Overall

• Our results show that LLMs cannot translate satisfactorily even for FOL
• Much worse than propositional logic (PL)

• Results much worse, much earlier: at 7 #ops, accuracy=75% (50%) for PL (FOL)
• In PL, we did not even count negations as operators!

FOLFOL
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Conclusions
• We introduced an effective technique for assessing LLMs in the 

sphere of  formal syntax

• Our approach is automatic and is developed on well-defined 
reasoning processes making it less susceptible to self-
evaluation/critic based hallucinations

Future Work

• Expand coverage to different kinds of  formal syntax: (e.g. PDDL)


