
Can LLMs translate SATisfactorily?
Assessing LLMs in Generating and Interpreting
Formal Specifications
Rushang Karia, Daksh Dobhal, Daniel Bramblett, Pulkit Verma, Siddharth Srivastava

Presenter

AAAI-24 Symposium Spring Symposium on
User-Aligned Assessment of Adaptive AI Systems

Introduction

• Language Models (LMs) have been shown to be successful in a myriad
of tasks
• Natural Language Translation
• Text Summarization
• Question Answering
• Named Entity Recognition
• …

• Recently, the advent of Large Language Models (LLMs) like ChatGPT
have extended the list of applications
• Code Generation
• Code Explanation

Introduction

• Language Models (LMs) have been shown to be successful in a myriad
of tasks
• Natural Language Translation
• Text Summarization
• Question Answering
• Named Entity Recognition
• …

• Recently, the advent of Large Language Models (LLMs) like ChatGPT
have extended the list of applications
• Code Generation
• Code Explanation

Motivation

• Increasing interest in using LLMs in system synthesis/explanation
• Needs LLMs to generate/translate formal syntax (e.g. source code)

Q: Can we use LLMs for generating/interpreting formal syntax?

A: Yes, but there are several challenges in doing so!

How do you create a scalable benchmark for testing LLMs?

Key Challenges

1. What datasets to use?
• Need datasets that are not already in the training set of LLMs
• Need datasets that can be well-characterized (e.g. complexity of clauses)

2. How do we automatically evaluate LLMs?
• Traditionally, humans annotate ground-truth data (very expensive)
• Can we do this automatically?

Key Challenges

1. What datasets to use?
• Need datasets that are not already in the training set of LLMs
• Need datasets that can be well-characterized (e.g. complexity of clauses)

2. How do we automatically evaluate LLMs?
• Traditionally, humans annotate ground-truth data (very expensive)
• Can we do this automatically?

Given an input 𝑥 consisting of a sequence of tokens, a (large) language model,
𝑝!(𝑥), parameterized by 𝜃, returns a sequence of tokens 𝑦 ~ 𝑝!(𝑦|𝑥′).

• The input 𝑥 is known as a prompt (usually contains the input and question)
• The output 𝑦 is conditioned on the context window size 𝑥′

• Critical for performance (serves as short-term memory)

(Large) Language Models: (L)LMs

Formal Syntax Translation: 𝑁𝐿 → 𝑆𝐴𝑇
Given an input prompt𝑁𝐿 in natural language, 𝑁𝐿 → 𝑆𝐴𝑇 converts
𝑁𝐿 to formal syntax 𝑆𝐴𝑇 s.t. 𝑆𝐴𝑇 accurately represents 𝑁𝐿

Formal Syntax Interpretation: 𝑆𝐴𝑇 → 𝑁𝐿
Given an input prompt 𝑆𝐴𝑇 in formal syntax, 𝑆𝐴𝑇 → 𝑁𝐿 converts 𝑆𝐴𝑇
to natural language 𝑁𝐿 s.t. 𝑁𝐿 accurately represents 𝑆𝐴𝑇

Our Contributions
We present an approach for automatic evaluation of 𝑁𝐿 ↔ 𝑆𝐴𝑇

1. Automatic, ground-truth data generation
• We generate data using the grammar of the formal language being tested
• Formulae variables are perturbed to generate OOD data

2. Two LLM copies for automatic evaluation of 𝑁𝐿 ↔ 𝑆𝐴𝑇
• We use an encoder-decoder scheme for automatic evaluation of 𝑁𝐿 ↔ 𝑆𝐴𝑇
• No human input required in the process

3. Extensive empirical evaluation
• We present an extensive evaluation using several SOTA LLMs

Automatic Assessment of𝑁𝐿 ↔ 𝑆𝐴𝑇 using LLMs

Given a statement 𝑓 in formal syntax, we
a) Encoding: Convert it to an NL description X using 𝑆𝐴𝑇 → 𝑁𝐿 using an LLM

b) Decoding: We use a copy of the LLM to convert X to formal syntax 𝑓′ using
𝑁𝐿 → 𝑆𝐴𝑇

c) Verifying: We use a verifier (such as a theorem prover) to check if 𝑓 ≡ 𝑓′

Encoding Decoding Verifying

Example

TRUE

Encoding Decoding Verifying

Scalable Datasets

• Generated using language grammars
• Can be scaled up easily (without requiring human annotation) as LLM capabilities evolve

• Can be stratified easily based on type of language produced
• Example: k-SAT propositional logic formulae

No/Minimal Human Input Needed

• Humans either not required at any point in the pipeline or trivially required
• Example: Setting up parameters of the dataset generation etc.

Robust against Hallucinations

• Many techniques (in contrast to ours), use LLMs as a self-critique verifier

• We use well-defined reasoning processes (external verifier) for truth evaluation
• This makes our approach less susceptible to hallucinations

Experiments

• We performed an empirical evaluation with two popular forms of formal syntax
1. Propositional logic
2. First-order logic

• We used several SOTA LLMs in our evaluation
1. ChatGPT (GPT-3.5-turbo)
2. GPT-4
3. Gemini (Pro)
4. Mistral (7B Instruct)

Our results show that LLMs are currently not suitable for deployment in formal
specification-based tasks.

A statement or formula in propositional logic consists of a set of
propositions connected together with logical connectives

• Grammar:

where 𝑥 is a proposition (e.g. 𝑥! = All men are mortal)

Example:

• We used Z3 to validate whether 𝑓! ≡ 𝑓" for two formulae: 𝑓!, 𝑓"

Propositional Logic

Prompt Engineering
• LLM performance quite often depends upon the prompt
• We ensured the efficacy of our prompts by testing different prompts on (k, m)-

CNF (Canonical Normal Form) formulae:

(k, m)-CNF formulae are propositional logic formulae expressed as

• We tested different prompts on a dataset of 400 such formulae with 𝑘 = 3, 𝑛 =
3, and 𝑚 ∈ [3, 21] until at least one LLM had ≥ 95% accuracy on 𝑁𝐿 ↔ 𝑆𝐴𝑇
• For a given 𝑘,𝑚, the formula has 𝑘 − 1 𝑚 operators.

Dataset Generation
We used the following grammar for generating formulae:

• Similar formula sizes as those in prompt engineering step
• # of operators used as metric for generating formulae.

• We used Z3 as the verifier for testing logical equivalence

Results: (5 runs, higher values better)

• GPT-4 outperforms other LLMs

• LLMs cannot perform 𝑁𝐿 ↔ 𝑆𝐴𝑇 satisfactorily in propositional logic

Common Failures

• One key failure was unable to
capture the parentheses correctly

• Another was a bias from the LLMs
knowledge based wherein it used
symbols other than those in the
prompt (e.g. →)

Assuming 𝑆𝐴𝑇 → 𝑁𝐿 was correct
and a human could correctly
decode the NL expression

• LLMs like Gemini would often
hallucinate during this phase

𝑁𝐿 → 𝑆𝐴𝑇 failures 𝑆𝐴𝑇 → 𝑁𝐿 failures

First-order Logic (FOL)
A statement or formula in first-order logic consists of a set of
predicates connected together with logical connectives and quantifiers

We used a similar prompt engineering step for FOL.

Results: Randomized predicates

• Results with randomized versions of predicates
• Eg: p1(o1) and p2(o1, o4)

• Performance of LLMs is about 50% for small formulae.

Results: English language-based predicates

• Results with English language-based versions of predicates
• Predicates were pulled from a vocabulary

• Slightly worse performance than randomized predicates

Results: Overall

• Our results show that LLMs cannot translate satisfactorily even for FOL
• Much worse than propositional logic (PL)

• Results much worse, much earlier: at 7 #ops, accuracy=75% (50%) for PL (FOL)
• In PL, we did not even count negations as operators!

FOLFOL

Results: Overall

• Our results show that LLMs cannot translate satisfactorily even for FOL
• Much worse than propositional logic (PL)

• Results much worse, much earlier: at 7 #ops, accuracy=75% (50%) for PL (FOL)
• In PL, we did not even count negations as operators!

PL

FOLFOL

Conclusions
• We introduced an effective technique for assessing LLMs in the

sphere of formal syntax

• Our approach is automatic and is developed on well-defined
reasoning processes making it less susceptible to self-
evaluation/critic based hallucinations

Future Work

• Expand coverage to different kinds of formal syntax: (e.g. PDDL)

