Can LLMs translate **SAT**isfactorily?

Assessing LLMs in Generating and Interpreting Formal Specifications

Rushang Karia, Daksh Dobhal, Daniel Bramblett, Pulkit Verma, Siddharth Srivastava

- TL;DR LLMs cannot translate formal syntax* but we can now automatically assess them! *yet
- Use of LLMs to translate/interpret formal syntax is increasing
- McKinsey revised 50% automation estimates by a decade

Motivation

Cognition

Introducing Devin, the first Al software engineer

"Kids shouldn't learn to code" - Jensen Huang, NVIDIA CEO

> WORLD GOVERNMENT SUMMIT, **DUBAI**, 2024

Widespread adoption:

How to efficiently generate new OOD data as LLMs evolve?

Key

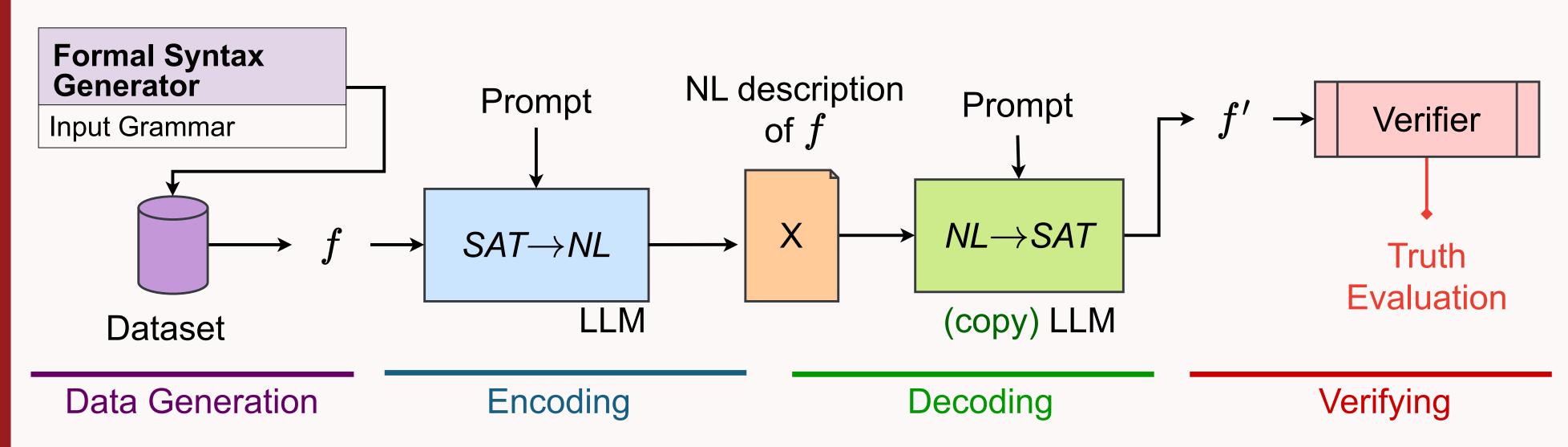
Challenges

How do we verifiy the translation capabilities of LLMs?

- How to annotate ground-truth data effectively?
- How to be robust in lieu of LLM hallucinations?

Can we make the pipeline automatic and human-independent?

Our Approach $NL \leftrightarrow SAT$



Is scalable: Uses syntax generators to scale datasets

Is handsfree: Uses two copies of an LLM to perform translation

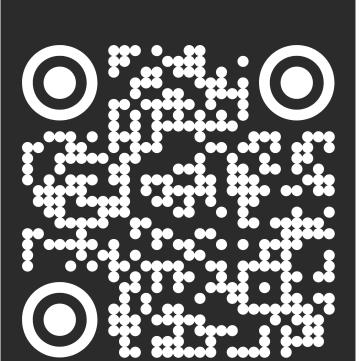
Is robust: Uses external verifiers to validate the results

Higher values better

Legend:

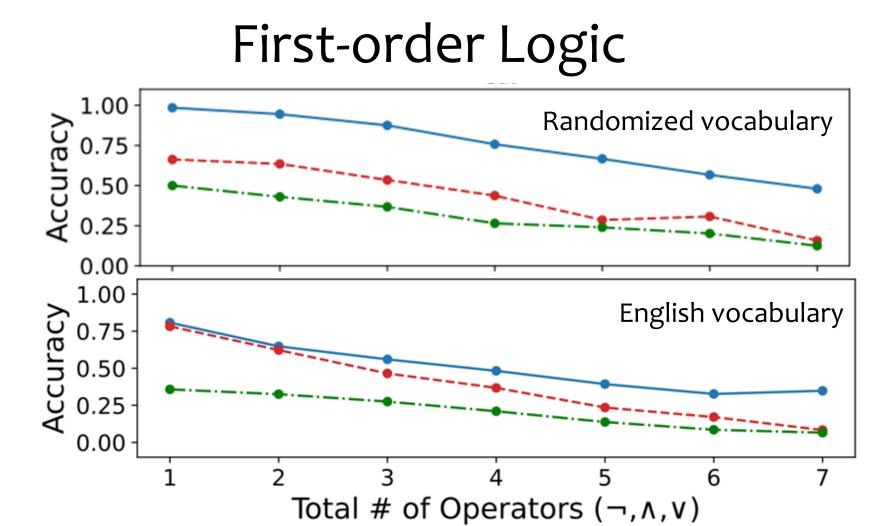
Prompt tuning: \geq 95% accuracy on k-SAT

Results



Propositional Logic ${\mathcal G}_{sat}: p o x|pee p|p\wedge p| eg p$ Accuracy 0.50 0.25 **Fruth Table** 0.75 0.50 °**ĕ** 0.25 35 f = Ground truth# of Operators (\land, \lor) $f' = \mathsf{LLM}$ -generated

- Performance ↓ as formula size ↑
- LLMs often misplace parentheses
- LLMs often hallucinate propositions



- Performance ↓ as formula size ↑
- ullet Worse than \mathcal{G}_{sat} on smaller inputs
 - \circ Similar failures as \mathcal{G}_{sat}
 - Quantifiers often misplaced
- Using English is worse

