
Can LLMs translate SATisfactorily?
Assessing LLMs in Generating and Interpreting Formal Specifications

Rushang Karia, Daksh Dobhal, Daniel Bramblett, Pulkit Verma, and Siddharth Srivastava
School of Computing and Augmented Intelligence

Arizona State University
Tempe, Arizona 85281 USA

{rushang.karia, ddobhal, drbrambl, verma.pulkit, siddharths}@asu.edu

Abstract

Stakeholders often describe system requirements using natu-
ral language which are then converted to formal syntax by a
domain-expert leading to increased design costs. This paper
assesses the capabilities of Large Language Models (LLMs)
in converting between natural language descriptions and for-
mal specifications. Existing work has evaluated the capabili-
ties of LLMs in generating formal syntax such as source code
but such experiments are typically hand-crafted and use prob-
lems that are likely to be in the training set of LLMs, and often
require human-annotated datasets. We propose an approach
that can use two copies of an LLM in conjunction with an
off-the-shelf SAT solver to automatically evaluate its trans-
lation abilities without any additional human input. Our ap-
proach generates formal syntax in the form of SAT formulae
to automatically generate a dataset. We conduct an empiri-
cal evaluation to measure the accuracy of this translation task
and show that SOTA LLMs cannot adequately solve this task,
limiting their current utility in the design of complex systems.

1 Introduction
Automatic system synthesis and verification often require
specifications to be provided in a formal language such as
propositional logic (Haubelt and Feldmann 2003; Scholl and
Becker 2001). Typically, human experts serve as middlemen
that can (a) translate natural language (NL) specifications of
stakeholders to formal syntax, or (b) explain or interpret the
system’s functionality by translating the system manual into
NL. Given the success of Large Language Models (LLMs)
in translation tasks (Xue et al. 2021), utilizing LLMs as mid-
dlemen can help in reducing overall system design costs.
Thus, it is vital to develop an evaluation methodology that
can assess the capabilities of LLMs in such settings.

However, developing such a methodology is quite diffi-
cult. Firstly, obtaining high-quality datasets - such as those
that contain ground truth data that LLMs have not been
trained on - is difficult. As LLMs evolve, the dataset would
need to evolve as well since it would likely be included as a
part of the next-gen LLMs training process. Scaling up ex-
isting datasets is challenging since they require human an-
notators to encode NL text and their formal specifications.

AAAI 2024 Spring Symposium on User-Aligned Assessment of
Adaptive AI Systems. Stanford University, Stanford, CA, USA.

Finally, the assessment task must consider both the direc-
tions of translation; formal-to-natural and natural-to-formal.
Existing approaches for evaluating LLMs often lack in one
of these dimensions.
Our Contributions We present a scalable approach for as-
sessing LLMs w.r.t. their capabilities in translating formal
syntax in a handsfree fashion. Our key contributions are:
1. Inspired by real-world system specifications, we pro-

pose the generation of boolean satisfiability (SAT) based
datasets that can be generated randomly using generators
and can be categorized by complexity.

2. We propose an automatic, handsfree approach that allows
the bidirectional assessment of the translation task using
two copies of an LLM by using off-the-shelf SAT solvers
to evaluate the translation accuracy.

3. We motivate research in this area by conducting an em-
pirical evaluation and showcasing that current SOTA
LLMs are lacking even on simple formal specifications.

There has been plenty of work on SAT reasoning using
LLMs (Fan et al. 2023; Pan et al. 2023; Tian et al. 2021).
These methods are orthogonal to the translation task consid-
ered in this paper which relates to generating descriptions of
SAT formulae and converting NL text to formulae.

Shi et al. (2022) use minimum Bayes risk decoding to
translate natural language to formal syntax like source code.
Their methodology uses existing datasets for assessing the
accuracy and cannot convert code to natural language. Star-
Coder (Li et al. 2023) is a language model that can generate
as well as summarise code. One key disadvantage of this ap-
proach is the reliance on expert, human-annotated datasets
in their evaluation.

In contrast to existing literature, our approach can accu-
rately assess an LLM without requiring human intervention
and can automatically scale datasets.

2 Assessing LLM SAT Translation
We now provide some background followed by a description
of our approach.
Formal Framework We consider formal specifications
that are expressed as boolean satisfiability (B-SAT) formu-
lae using propositional logic (Biere et al. 2021). Given a set
of n boolean variables X = {x1, . . . , xn} and boolean op-
erators representing negation (¬), disjunction (∨), and con-

In AAAI 2024 Spring Symposium on User-Aligned Assessment of Adaptive AI Systems (AIA 2024)
Stanford, CA, USA

junction (∧), a SAT formula f is obtained by recursively
applying the grammar Gsat → x|p ∨ p′|p ∧ p′|¬p where
x ∈ X . The canonical representation of formulae obtained
using Gsat is the conjunctive normal form (CNF). A for-
mula f is in (k,m)−CNF form if f ≡ f1 ∧ . . . ∧ fm where
fi = p1∨. . .∨pk and pi = {xj ,¬xj} with xj ∈ X . Given an
assignment X of truth values to every variable in X , f(X)
is the truth value of the formula. Two formulae f1, f2 are
equivalent f1 ≡ f2 if they have the same truth value for all
possible assignments using X , i.e. ∀Xf1(X) = f2(X).
The LLM SAT translation task (NL↔SAT) Given an LLM,
the SAT→NL translation task involves converting a SAT for-
mula f to an NL description. Similarly, NL→SAT translates
an NL description to a SAT formula.
Our Approach Let e be a non-deterministic function that
translates a natural language string s to a SAT formula f .
Similarly, let d be a non-deterministic function that trans-
lates f to s. e and d thus serve as an encoder and decoder
that can perform SAT→NL and NL→SAT respectively. In
general, there are many possible correct encodings e(f) and
decodings d(s) for a given f and s. Thus, the functions e−1

and d−1 are not well-defined.
Our key observation is that if e and d come from the same

system (e.g. a neural network or LLM), then we can check
the accuracy of the system by composing e and d. Let f be
a SAT formula. Now, if the system preserves truth in both
translations, then d(s) will be a factual representation of f
and f ′ = d(e(f)) will be equivalent to f even if f and f ′

are not syntactically identical. Since e(f) produces natural
language description it is quite challenging to check whether
e(f) is a factual representation of f without human interven-
tion. However, we can use off-the-shelf SAT solvers like Z3
(de Moura and Bjørner 2008) to check if f ≡ d(e(f)).

We use the above insights to automatically assess the
SAT→NL and NL→SAT capabilities of LLMs (i.e. e and d
are represented by the same LLM). Since LLMs utilize con-
text windows to change their output, we use two different
copies of the same LLM so that there is no contextual knowl-
edge being exchanged between the encode-decode process.
Dataset Generation We create high-quality datasets by
using SAT formulae generators that use Gsat to generate
formulae. One key benefit of using such generators is that
can they can generate SAT formulae with a certain struc-
ture or complexity class. For example, (k,m)−CNF gen-
erators generate structured CNF formulae and it is well-
known that for a formula with n variables, there is a ratio
r = m/n where the difficulty of the problem increases (Sel-
man, Mitchell, and Levesque 1996).

3 Empirical Evaluation
We used GPT-4 (OpenAI 2023b), GPT-3.5-turbo (OpenAI
2023a), Mistral-7B-Instruct (Mistral AI 2023), and Gemini
Pro (Google 2023) as the SOTA LLMs in our evaluation. We
evaluate whether they are effective for NL↔SAT. As a result,
we used a simple setting k = n = 3 in creating our dataset.
Real-world systems use values for k, n that are much higher.

We tested our prompts by generating a dataset Dcnf of
400 different (k,m = rn)−CNF formulae by varying r

from 1.0 to 7.0 using a step size of 0.5. CNF formulae are
structured and easy to describe making them a good bench-
mark for testing the efficacy of our prompts. The SAT→NL
prompt asks an LLM to convert a SAT formula to an NL
description whereas the NL→SAT prompt asks to convert
the NL description to a SAT formula and output only the
SAT formula with no other text. We iteratively modified our
prompts until at least one LLM (GPT-4 in our case) was able
to achieve ≥ 95% accuracy in NL↔SAT on Dcnf.

CNF formulae serve as a good test bed for prompts but hu-
man stakeholders are unlikely to understand or describe sys-
tem capabilities in such a format. Thus, our evaluation tests
the efficacy of SOTA LLMs on NL↔SAT using randomly
generated formulae. To do this, we randomly generated 400
different formulae by recursively applying Gsat. For a CNF
formula in Dcnf with ratio r, we generated a comparable
random formula such that the total number of operators (∧,
∨) are equal in both.

We used the same prompt for all LLMs. Finally, we used
a temperature of 0.1 for all models.

10 15 20 25 30 35 40

0.00

0.25

0.50

0.75

1.00
A

cc
ur

ac
y

Gsat

Total # of Operators (∧, ∨)

GPT-4 GPT-3.5-turbo Mistral Gemini

Figure 1: Accuracies (higher values better) of various SOTA
LLMs on NL↔SAT on randomly generated formulae.

Results Our results are presented in Fig.1. It is clear from
our results that current SOTA LLMs are not performant in
the NL↔SAT task. As the size of the formula (the total num-
ber of conjunctions and disjunctions) increases, the perfor-
mance degrades across all LLMs. These results are even sur-
prising for GPT-4 whose accuracy on comparable CNF for-
mulae was always ≥ 95%. We describe some of the errors
that cause the low accuracy of the LLMs.
SAT→NL Errors: One of the most common errors in this
translation was messing the order of the parentheses. The
LLMs were not able to effectively describe the formulae tak-
ing into account the parentheses.
NL→SAT Errors: Hallucinations and negating propositions
were common errors even when the NL sentence was suffi-
cient for a human to correctly decode it to a SAT formula.

4 Conclusions and Future Work
We develop an approach that allows for effective assessment
in the formal translation capabilities of SOTA LLMs. Our
approach does not require human annotations to verify the
accuracy of translation. Our results show that there is much
to be done before LLMs can be deployed in translating for-
mal syntax. We plan to investigate approaches that can help
improve performance in future work.

Acknowledgements
The project was supported in part by the Arizona State Uni-
versity’s GPSA Jumpstart Research Grant.

References
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition. IOS
Press. ISBN 978-1-64368-160-3.
de Moura, L. M.; and Bjørner, N. S. 2008. Z3: An Efficient
SMT Solver. In Proc. TACAS.
Fan, L.; Hua, W.; Li, L.; Ling, H.; Zhang, Y.; and Hemphill,
L. 2023. NPHardEval: Dynamic Benchmark on Reasoning
Ability of Large Language Models via Complexity Classes.
arXiv:2312.14890.
Google. 2023. Gemini Pro. https://arxiv.org/pdf/2312.
11805.pdf. Accessed: 2023-01-10.
Haubelt, C.; and Feldmann, R. 2003. SAT-based Techniques
in System Synthesis. In Proc DATE.
Li, R.; Allal, L. B.; Zi, Y.; Muennighoff, N.; Kocetkov, D.;
Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; Liu, Q.;
Zheltonozhskii, E.; Zhuo, T. Y.; Wang, T.; Dehaene, O.;
Davaadorj, M.; Lamy-Poirier, J.; Monteiro, J.; Shliazhko,
O.; Gontier, N.; Meade, N.; Zebaze, A.; Yee, M.; Uma-
pathi, L. K.; Zhu, J.; Lipkin, B.; Oblokulov, M.; Wang,
Z.; V, R. M.; Stillerman, J.; Patel, S. S.; Abulkhanov, D.;
Zocca, M.; Dey, M.; Zhang, Z.; Moustafa-Fahmy, N.; Bhat-
tacharyya, U.; Yu, W.; Singh, S.; Luccioni, S.; Villegas, P.;
Kunakov, M.; Zhdanov, F.; Romero, M.; Lee, T.; Timor, N.;
Ding, J.; Schlesinger, C.; Schoelkopf, H.; Ebert, J.; Dao, T.;
Mishra, M.; Gu, A.; Robinson, J.; Anderson, C. J.; Dolan-
Gavitt, B.; Contractor, D.; Reddy, S.; Fried, D.; Bahdanau,
D.; Jernite, Y.; Ferrandis, C. M.; Hughes, S.; Wolf, T.; Guha,
A.; von Werra, L.; and de Vries, H. 2023. StarCoder: May
the Source be With You! Transactions on Machine Learning
Research.
Mistral AI. 2023. Mistral-7B Instruct v0.2. https:
//huggingface.co/mistralai/Mistral-7B-Instruct-v0.2. Ac-
cessed: 2023-01-10.
OpenAI. 2023a. GPT-3.5-turbo-0613. https://platform.
openai.com/docs/models/gpt-3-5. Accessed: 2023-01-10.
OpenAI. 2023b. GPT-4-1106-preview. https://arxiv.org/pdf/
2303.08774.pdf. Accessed: 2023-01-10.
Pan, L.; Albalak, A.; Wang, X.; and Wang, W. Y. 2023.
Logic-LM: Empowering Large Language Models with Sym-
bolic Solvers for Faithful Logical Reasoning. In Proc.
EMNLP Findings.
Scholl, C.; and Becker, B. 2001. Checking Equivalence for
Partial Implementations. In Proc. DAC.
Selman, B.; Mitchell, D. G.; and Levesque, H. J. 1996. Gen-
erating Hard Satisfiability Problems. AIJ, 81(1-2): 17–29.
Shi, F.; Fried, D.; Ghazvininejad, M.; Zettlemoyer, L.; and
Wang, S. I. 2022. Natural Language to Code Translation
with Execution. In Proc. EMNLP.
Tian, J.; Li, Y.; Chen, W.; Xiao, L.; He, H.; and Jin, Y.
2021. Diagnosing the First-Order Logical Reasoning Ability
Through LogicNLI. In Proc. EMNLP.

Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.;
Siddhant, A.; Barua, A.; and Raffel, C. 2021. mT5: A Mas-
sively Multilingual Pre-trained Text-to-Text Transformer. In
Proc. NAACL-HLT.

