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Introduction

Human-AI Collaboration is a rapidly evolving and promising field

Introduction H-AI Collaboration
Roles

Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Healthcare Finance

Art Manufacturing

Accelerates the diagnostic 
process and enhances the 
accuracy of results.

Provides early warnings 
about potential market shifts 
or emerging opportunities.

Offers suggestions and 
refining the output based on 
user preferences.

Collaborative robots handle 
the physically demanding, 
repetitive tasks, reducing 
human fatigue and injuries.
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Healthcare Finance

Art Manufacturing

Accelerates the diagnostic 
process and enhances the 
accuracy of results.

Provides early warnings 
about potential market shifts 
or emerging opportunities.

Offers suggestions and 
refining the output based on 
user preferences.

Collaborative robots handle 
the physically demanding, 
repetitive tasks, reducing 
human fatigue and injuries.

AI can’t replace the human expertise but rather enhances their capabilities, 
creating a synergy that improves productivity.
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Promising for Automated Planning

Initial state of 
the world

Desired goal

Set of possible 
actions

Automated 
Planner

Plan
(action sequence)

Inputs
(Domain + Problem)

Output

For realistic scenarios (large, complex, few assumptions), automated planners typically can’t generate optimal solutions.
They rely on heuristics and relaxation techniques to find “good enough” solutions. 
But still not sufficient for real-world problems that require adaptability and scalability.
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Promising for Automated Planning

Initial state of 
the world

Desired goal

Set of possible 
actions

Automated 
Planner

Plan
(action sequence)

Inputs
(Domain + Problem)

Output

For realistic scenarios (large, complex, few assumptions), automated planners typically can’t generate optimal solutions.
They rely on heuristics and relaxation techniques to find “good enough” solutions. 
But still not sufficient for real-world problems that require adaptability and scalability.

Difficulty defined by:

● Problem Size
○ Number of objects
○ Number of actions

● Simplifying assumptions
○ Deterministic or not
○ Discrete or Continuous
○ Full or Partial Observability 
○ Sequential or Concurrent
○ Single or Multi-Agent
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Promising for Automated Planning

For realistic scenarios, automated planners can’t generate optimal solutions.
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Promising for Automated Planning

Human high-level reasoning could guide the solving process.

For realistic scenarios, automated planners can’t generate optimal solutions.

Heuristics
& 

Relaxation techniques
“Good enough” 

solutions 

Not sufficient for high stakes scenarios

However, requires expert knowledge in formal programming and planning languages
(e.g. PDDL, Python, etc..)
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LLMs as a potential solution

Their ability to process and generate natural language offers a unique combination of 
abstraction and generalization. 
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LLMs as a potential solution

Their ability to process and generate natural language offers a unique combination of 
abstraction and generalization. 

However, LLMs alone are not sufficient for solving complex planning problems 
(Kambhampati et al., ICML 2024). 

Blocksworld Obfuscated 
Blocksworld

SoTA LLMs 60% 4%
Success rates

They suffer from too many limitations in reasoning, consistency and reliability. 
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LLMs as a potential solution

More precisely, considering the natural 
language processing capabilities of LLMs, 
we believe that hybrid human-in-the-loop 
approaches are very promising. 

This highlights the need for hybrid approaches combining the strengths of symbolic reasoning 
with the flexibility of LLMs.

Introduction H-AI Collaboration
Roles

Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Human Symbolic AI

LLM
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Running Example: Disaster Recovery

Goal: Rescue groups of persons endangered by a natural disaster
[Zakershahrak 2021]

: Changing weather

Persons:
• Scattered
• Can be injured

Cities:
• Connected by roads
• Can have heliports

Rescue forces:
• Limited resources
• Limited knowledge

Weather:
• Road practicability
• Aerial navigation
• Changing over time
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Running Example: Disaster Recovery

[Zakershahrak 2021]

: Changing weather

This is the kind of complex scenario where a H-AI collaboration would be efficient, 
leveraging the strength of each agent to play a relevant role in the solving process.

Maximizing success chances

Trade-offs between 
rapid response and risk-taking

Proper prior reasoning and planning
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H-AI Collaboration Roles

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Human Symbolic AI LLM
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Human

Role: 
Acts as high-level reasoners and critics.

Strengths:
• Inherent common sense and intuition.
• Risk evaluation and estimation.

Example: 
Decides which rescue strategies align with ethical and practical 
considerations.

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Human
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Symbolic AI

Role: 
Handles low-level and complex reasoning and calculations

Strengths:
• Calculation power.
• Guaranteed sound and correct solutions.
• Ensures detailed and reliable planning.

Example: 
In disaster recovery, it calculates and compares rescue plans based on 
several constraints.

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Symbolic AI
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LLM

Role: 
Acts as an interface translator between humans and symbolic AI

Example: 
Translates human instructions into formal constraints for the planner

Advisory Roles:
• Advises Symbolic AI: Proposes ideas to guide the search 

process (e.g., prioritizing rescue routes).
• Advises Humans: Highlights relevant information and proposes 

strategies (e.g., using drones for scouting).

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

LLM
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Challenges of using LLMs

Introduction
H-AI Collaboration
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and Dependability

Measuring 
Performances Conclusion

• LLMs can hallucinate, misinterpret, or omit information, 
leading to errors

• Difficult to verify LLM outputs beyond syntactic checks

• LLMs trained on human data, have similar biais
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Challenges of using LLMs

Source: Kokel et al., ACPBench: Reasoning about Action, 
Change, and Planning, AAAI 2025

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

• LLMs can hallucinate, misinterpret, or omit information, 
leading to errors

• Difficult to verify LLM outputs beyond syntactic checks

• LLMs trained on human data, have similar biais

• Not great at planning or reasoning tasks
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Challenges of using LLMs

Source: Kokel et al., ACPBench: Reasoning about Action, 
Change, and Planning, AAAI 2025

Introduction
H-AI Collaboration

Roles
Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

Effective collaboration requires leveraging the strengths of 
all three components while addressing LLM limitations

• LLMs can hallucinate, misinterpret, or omit information, 
leading to errors

• Difficult to verify LLM outputs beyond syntactic checks

• LLMs trained on human data, have similar biais

• Not great at planning or reasoning tasks
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Transparency

Transparency, Dependability, and Trust

Trust Dependability
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Transparency

Dependability
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Transparency

Helps humans understand AI decisions. 
E.g. why a particular route has been chosen. 

Trust

Transparency, Dependability, and Trust
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• AI Transparency in the age of LLMs (Liao & Wortman Vaughan, HDSR 
2024) → Transparency approaches that influence trust :
• Model Reporting – helps users decide whether a model is trustworthy for a task.
• Publishing Evaluation Results – offers performance evidence to guide trust.
• Communicating Uncertainty – helps users gauge confidence and avoid overreliance.
• Explanations – help understand model logic but must be faithful and user-aligned.
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• Human-centered XAI (Ehsan et al., CHI 2024):
• LLM transparency not as a technical artifact but as a human-centered, socio-technical 

interaction design problem. 
• In the LLM era, true transparency means helping people make sense of the 

model—contextually, responsibly, and meaningfully—not just peeking into its architecture.

• AI Transparency in the age of LLMs (Liao & Wortman Vaughan, HDSR 
2024) → Transparency approaches that influence trust :
• Model Reporting – helps users decide whether a model is trustworthy for a task.
• Publishing Evaluation Results – offers performance evidence to guide trust.
• Communicating Uncertainty – helps users gauge confidence and avoid overreliance.
• Explanations – help understand model logic but must be faithful and user-aligned.
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Transparency, Dependability, and Trust
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Dependability

Ensure the production of correct results.
Requires robust mechanisms to handle errors and uncertainties.

Trust

Transparency
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Transparency, Dependability, and Trust

Introduction H-AI Collaboration
Roles
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Performances Conclusion

Dependability

• Intuitive approach
• flag uncertain or ambiguous output for human review

• Prometheus 2 (Kim et al., EMNLP 2024)
• an LM specializes in evaluating other LMs 

• Cascaded Selective Evaluation (Jung et al., ICLR 2025)
• Start with cheaper/weaker LLMs to judge outputs.

• Only escalate to stronger LLMs (like GPT-4) when the earlier judge isn't confident 
enough.

• Each evaluation decision is paired with a confidence threshold, ensuring that if a 
model makes a judgment, it’s highly likely (e.g., ≥ 90%) to match a human's 
decision.

• ⇒ What if the best LLM still couldn’t satisfy human?

Dependability

Ensure the production of correct results.
Requires robust mechanisms to handle errors and uncertainties.

Trust

Transparency
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Transparency

Trust

Trust

Mandatory to properly divide workload, 
and thus, for seamless collaboration.

Built through consistent and reliable performance.

Transparency, Dependability, and Trust

Dependability
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Transparency

Trust

• Attained when two other points ok?

• Another angle: Learning to Lie (Musaffar et al., ICLR 2025 workshop)
• Trust Formation - Humans overestimate AI capability early on

• Trust Dynamics - Trust decays only after multiple failures

• Attack Impact - Trust can be exploited to mislead humans

• Safety Implication - We need better trust calibration mechanisms in LLM design and 
interaction interfaces

Trust

Mandatory to properly divide workload, 
and thus, for seamless collaboration.

Built through consistent and reliable performance.

Transparency, Dependability, and Trust

Dependability
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Measuring Performances
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Performances

Conclusion

For AI: Different evaluation 
metrics for different roles:

- planning
- translation
- suggestion
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Measuring Performances

Introduction H-AI Collaboration
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Transparency, Trust 
and Dependability

Measuring 
Performances

Conclusion

For AI: Different evaluation 
metrics for different roles:

- planning
- translation
- suggestion

success rate, reward 
(Huang et al. 2024)

consistency, plausibility, 
and stability (APS solver) 
(Perko and Wotawa 2024)

accuracy, diversity, and 
fairness (Gao et al. 2024)
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Measuring Performances

Introduction H-AI Collaboration
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and Dependability

Measuring 
Performances

Conclusion

For AI: Different evaluation 
metrics for different roles:

- planning
- translation
- suggestion

For human: Cognitive metrics 
through user studies:

- trust
- adaptability

TOAST (Trust of Automated 
Systems Test), and TrustDiff 
⇒ Quantitatively assessed pre- 
and post-interaction
(Oelschlager 2024)

humans adapt to LLMs:
how users adjust behavior, 
emotions, and thinking. 
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Measuring Performances
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Overall:
● Qualitative metrics: 

solution quality, human 
satisfaction, cognitive load 

● Quantitative metrics: task 
completion time, planning 
time, usability of each 
resource or agent of the 
problem

● Benefit-risk tradeoffs: 
ethical concerns, risk 
evaluation, task 
performance, human in the 
loop for critical 
decision-making problem

For AI: Different evaluation 
metrics for different roles:

- planning
- translation
- suggestion

For human: Cognitive metrics 
through user studies:

- trust
- adaptability
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Conclusion
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Roles
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H-AI collaboration seems mandatory and promising for reliable and efficient problem-solving. 
Improve solving of complex and realistic tasks.

We are addressing the problem of designing and evaluating such a collaborative framework 



34Massachusetts Institute of Technology

Conclusion

Introduction H-AI Collaboration
Roles

Transparency, Trust 
and Dependability

Measuring 
Performances Conclusion

We aim to leverage the strengths of humans, LLMs, 
and symbolic AI, each playing a distinct role, to create 
a human-in-the-loop hybrid reasoning framework.

H-AI collaboration seems mandatory and promising for reliable and efficient problem-solving. 
Improve solving of complex and realistic tasks.

We are addressing the problem of designing and evaluating such a collaborative framework 

Human Symbolic AI

LLM

But requires addressing challenges related to verification, transparency and 
dependability, as well as developing robust performance metrics.
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