

A Collaborative Numeric Task Planning Framework based on Constraint Translations using LLMs

HAXP: Workshop on Human-Aware and Explainable Planning

November 10, 2025

Anthony Favier, **Ngoc La**, Pulkit Verma, Julie A. Shah

A Collaborative Numeric Task Planning Framework based on Constraint Translations using LLMs

LM4Plan: Workshop on Planning in the Era of LLMs

November 11, 2025

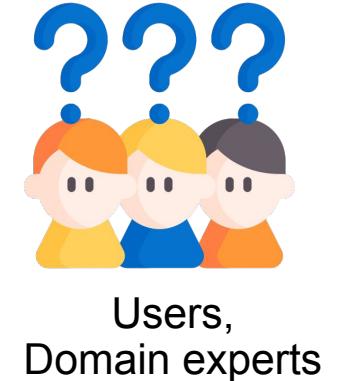
Anthony Favier, **Ngoc La**, Pulkit Verma, Julie A. Shah

Introduction

Limited accessibility

Requires:

- programming knowledge
- or technical expert interventions



- Problematic for **time-constrained** problem solving, such as **disaster response** scenarios.
- Computing the **optimal** solution is **extremely challenging**.
- Focus on **only** finding best **valid** solution, given a **limited time budget**.

Introduction

Leveraging domain experts intervention
Collaborative Planning

Significant **potential** for
higher
quality solutions and **efficiency**.

(Kim, Banks, Shah. AAAI 2017)

Original Planning Files

```
(:predicates
(at ?x - (person aircraft) ?c - city)
(in ?p - person ?a - aircraft))

(:functions
(fuel ?a - aircraft)
(distance ?a)
(capacity ?a)
(total-fuel ?a)
(onboard ?a)
(zoom-limit ?a)
(:action board
  (and (at ?a
    (= (capacity plane1) 2326)
    (= (fuel plane1) 205)
    (= (onboard plane1) 0)
    ...
  )
  ...
)
```

Encoding of Users' High-Level Strategies

```
(:predicates
(at plane1 city4)
(at plane2 city3)
(at plane3 city3)
(at person1 city1)
(at person2 city2)
(at person3 city1)
(= (capacity plane1) 2326)
(= (fuel plane1) 205)
(= (onboard plane1) 0)
...
)
Soft Constraints
forall (?a - aircraft)
(at-end
  (<= paths ?a) 3)
```

Problem Visualization

Automated Planner Execution

User High-Level Input Guidance is translated by **programming experts** in PDDL3 soft constraints (preferences)

Average translation time = 3 min (SD=1.3)

"For each aircraft, find routes in three paths or less."

Large Language Models

Promising and improving results in reasoning tasks.
(OpenAI. Gpt-4 technical report. arXiv 2023)

	GPT-4 Evaluated few-shot	GPT-3.5 Evaluated few-shot
HumanEval [43] Python coding tasks	67.0% 48.1%	0-shot
DROP [58] (F1 score) Reading comprehension & arithmetic.	80.9 64.1	3-shot
GSM-8K [60] Grade-school mathematics questions	92.0%* 57.1%	5-shot chain-of-thought

Table 2. Performance of GPT-4 on academic benchmarks.

Large Language Models

Still can't plan reliably on their own.
(Kambhampati et al. ICML 2024)

Domain	Method	Instances correct					
		GPT-4o	GPT-4-Turbo	Claude-3-Opus	LLaMA-3 70B	Gemini Pro	GPT-4
Blocksworld (BW)	One-shot	170/600 (28.33%)	138/600 (23%)	289/600 (48.17%)	76/600 (12.6%)	68/600 (11.3%)	206/600 (34.3%)
	Zero-shot	213/600 (35.5%)	241/600 (40.1%)	356/600 (59.3%)	205/600 (34.16%)	3/600 (0.5%)	210/600 (34.6%)
Mystery BW (Deceptive)	One-shot	5/600 (0.83%)	5/600 (0.83%)	8/600 (1.3%)	15/600 (2.5%)	2/500 (0.4%)	26/600 (4.3%)
	Zero-shot	0/600 (0%)	1/600 (0.16%)	0/600 (0%)	0/600 (0%)	(0/500) (0%)	1/600 (0.16%)

Table 1. Results of LLMs for Plan Generation with prompts in natural language.

Large Language Models

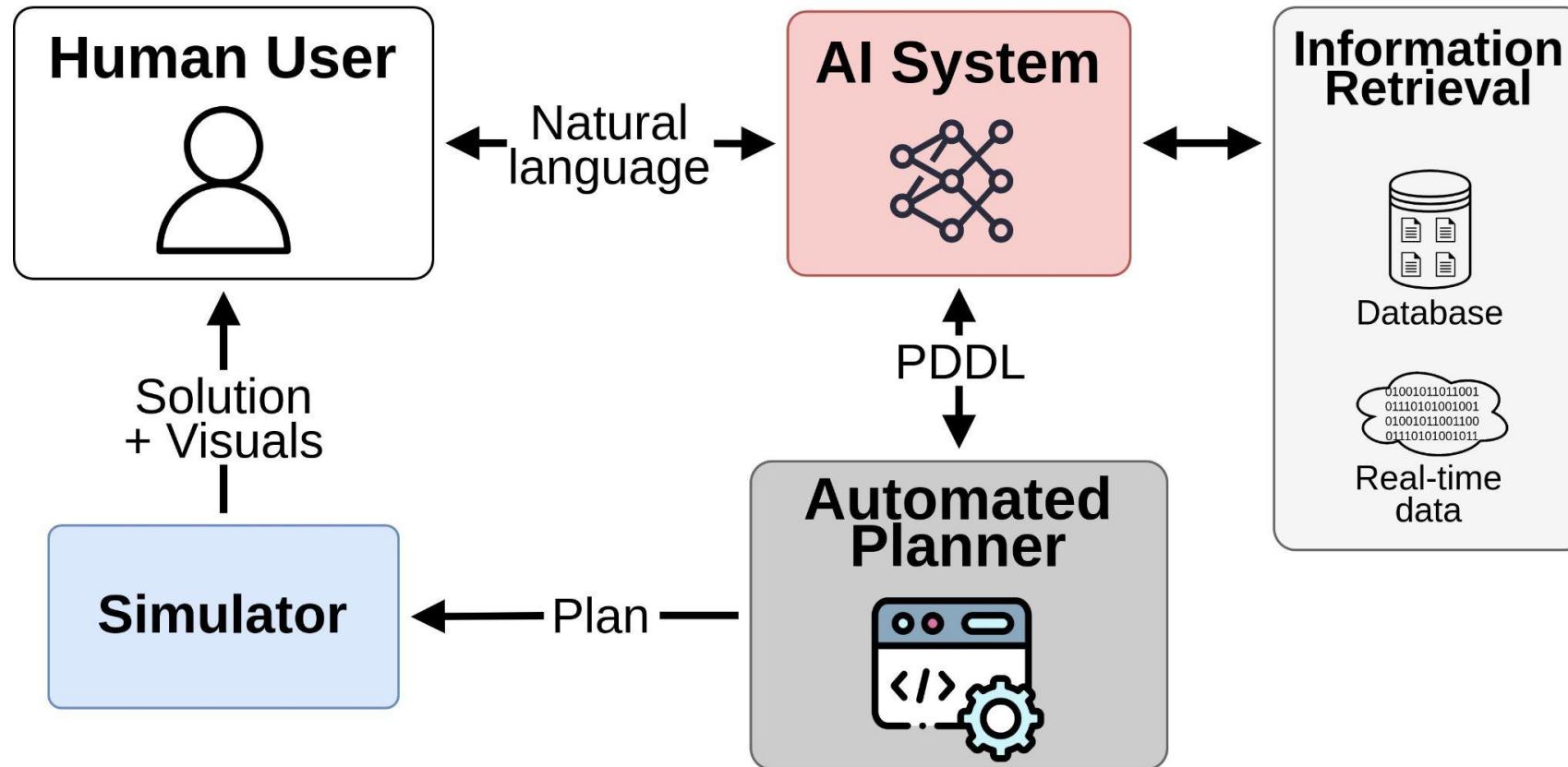
LLM can act as a **bridge** to improve accessibility

Our motivation

Improve planning accessibility
to better
leverage human expertise and intuition

- **Avoid** “intuitively bad solutions” and **focus** on “promising directions”.
- **Explore** specific strategies in a “Let’s try this and rollback” approach.
- Dynamically **refine** solutions and **iterate** toward more effective outcomes.

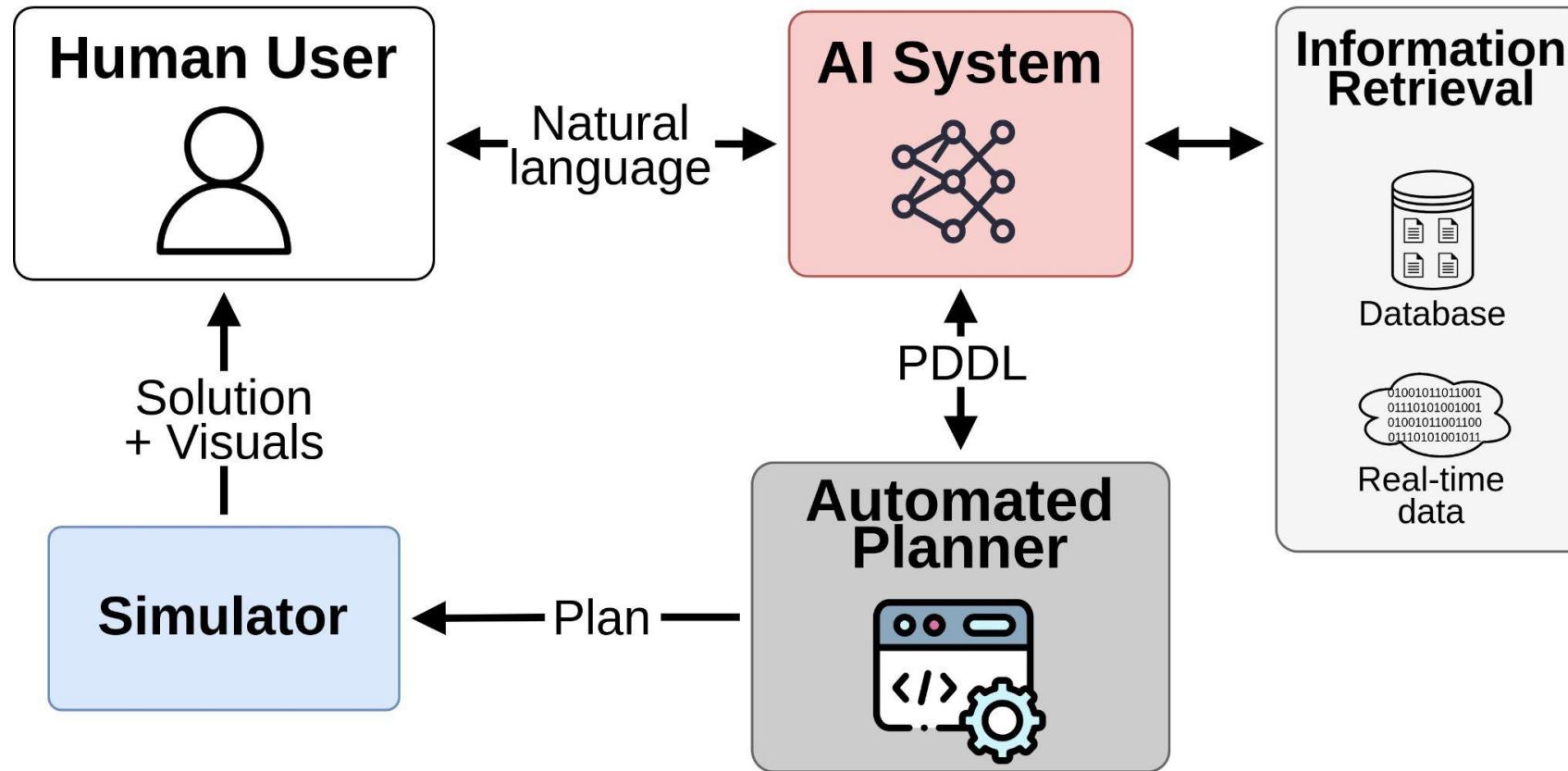
Contribution: Hybrid Collaborative Planning Framework



A **symbolic** automated planner computes plans

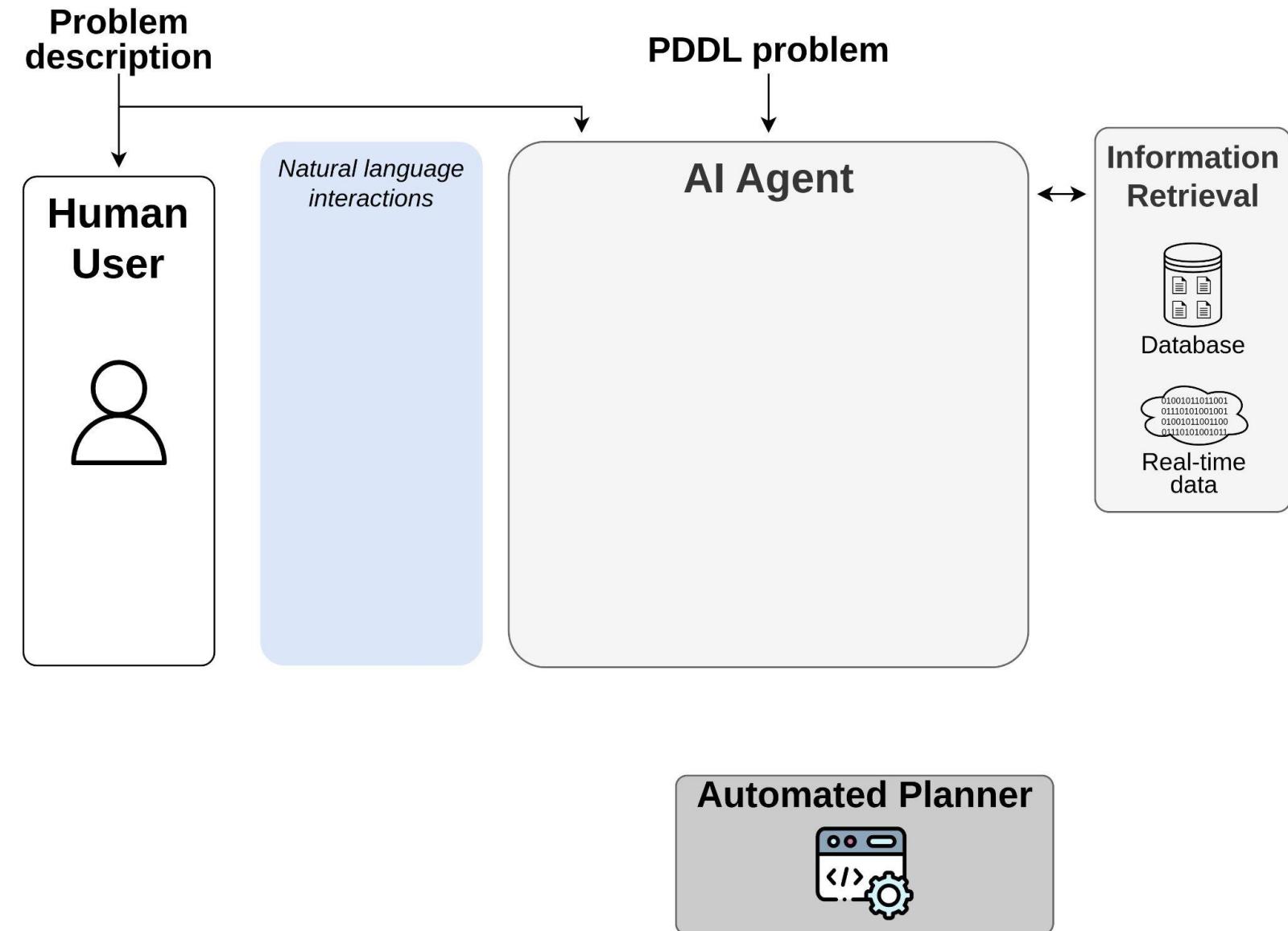
An **LLM-based system** acts as an **interface** and for model elicitation

Contribution: Hybrid Collaborative Planning Framework



Human can **influence** problem solving,
without technical expertise requirements

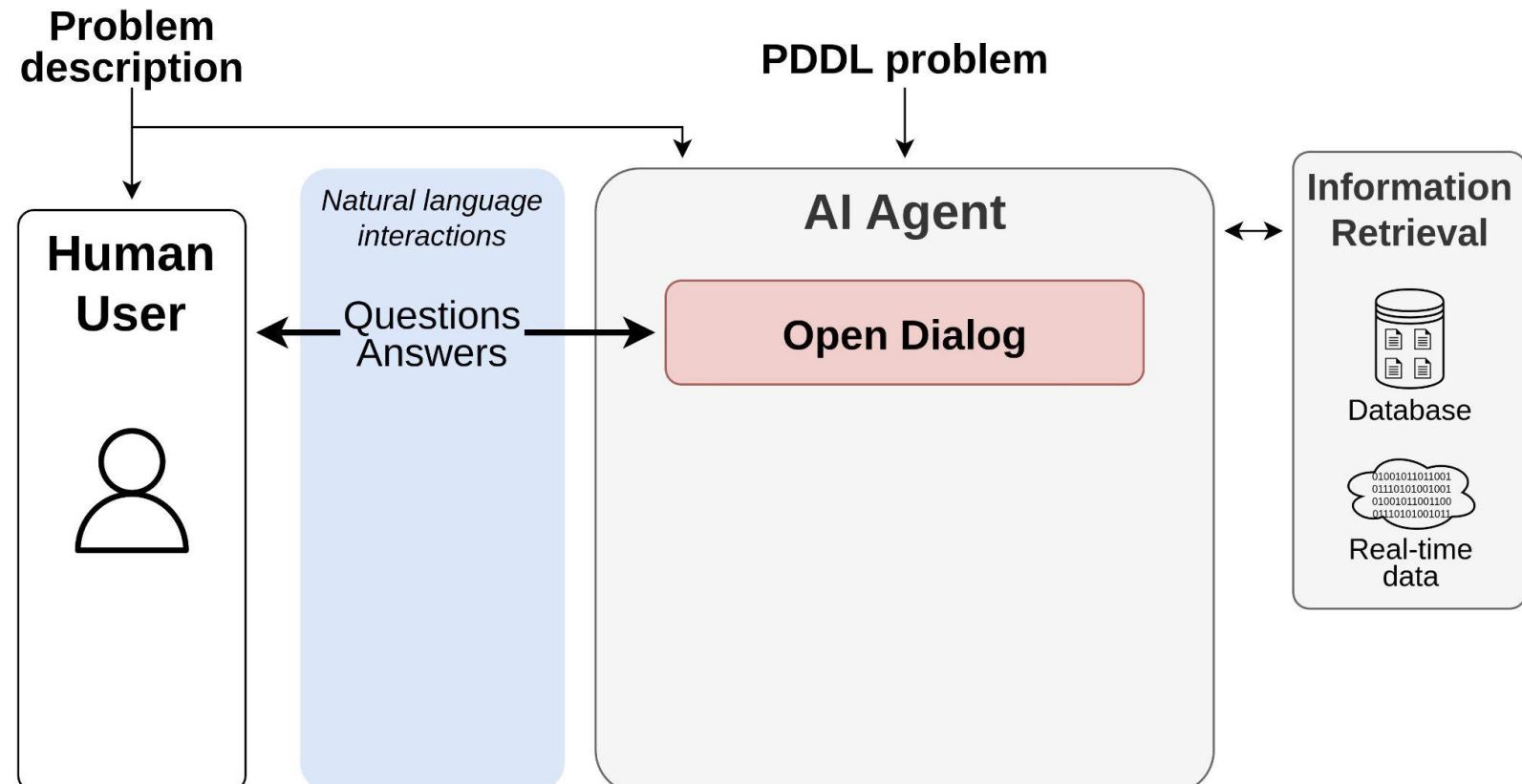
Main capabilities: Chat, Suggestions, Translation



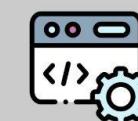
Main capabilities: Chat, Suggestions, Translation

Chat

- Get insight on the problem
- Summarize problem
- Modify existing plans
- **No PDDL** for user



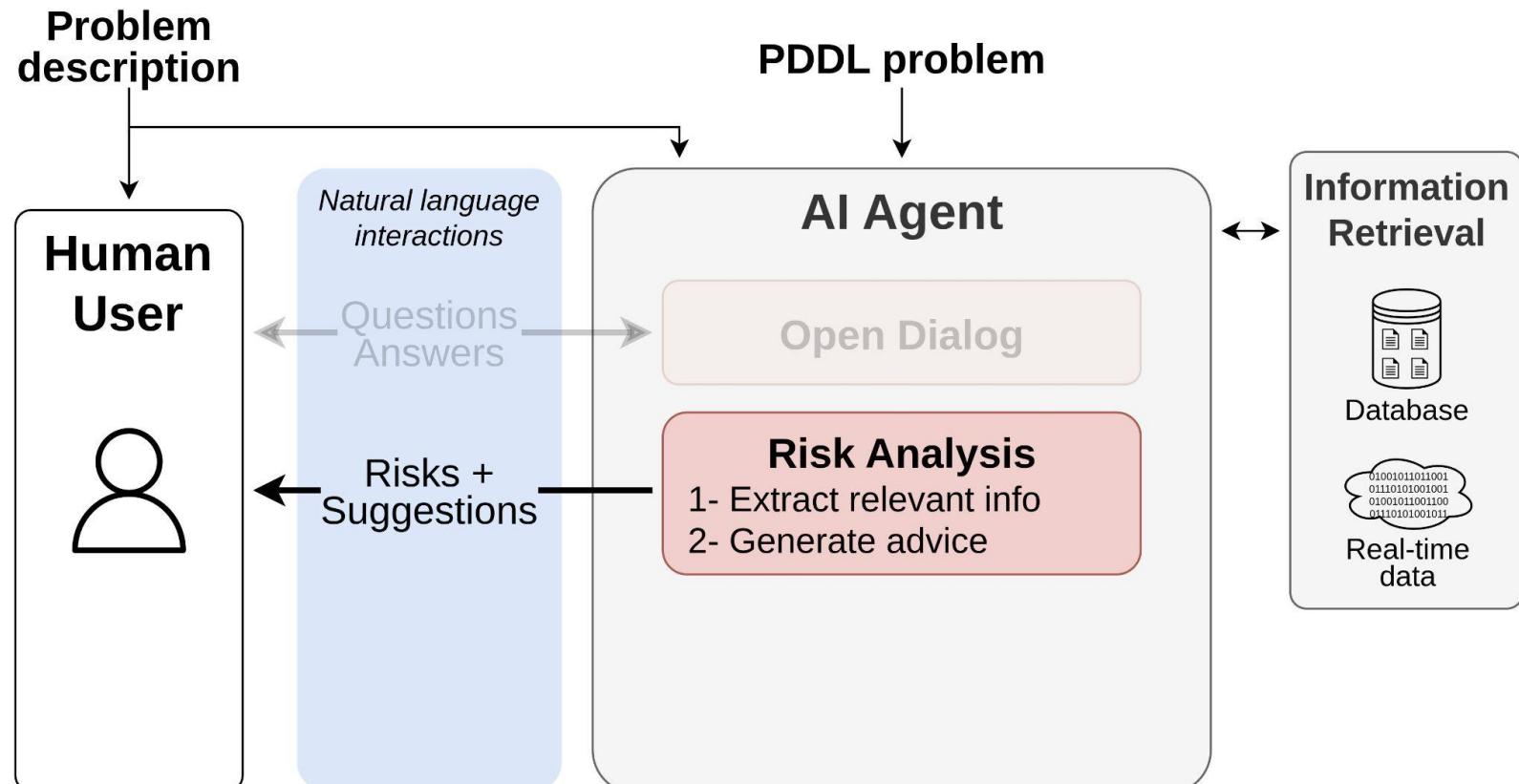
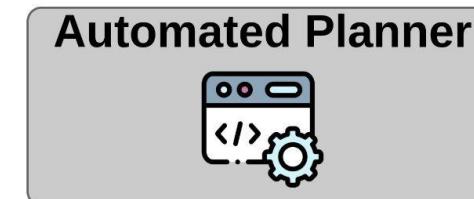
Automated Planner



Main capabilities: Chat, Suggestions, Translation

Highlight information,
Make suggestions

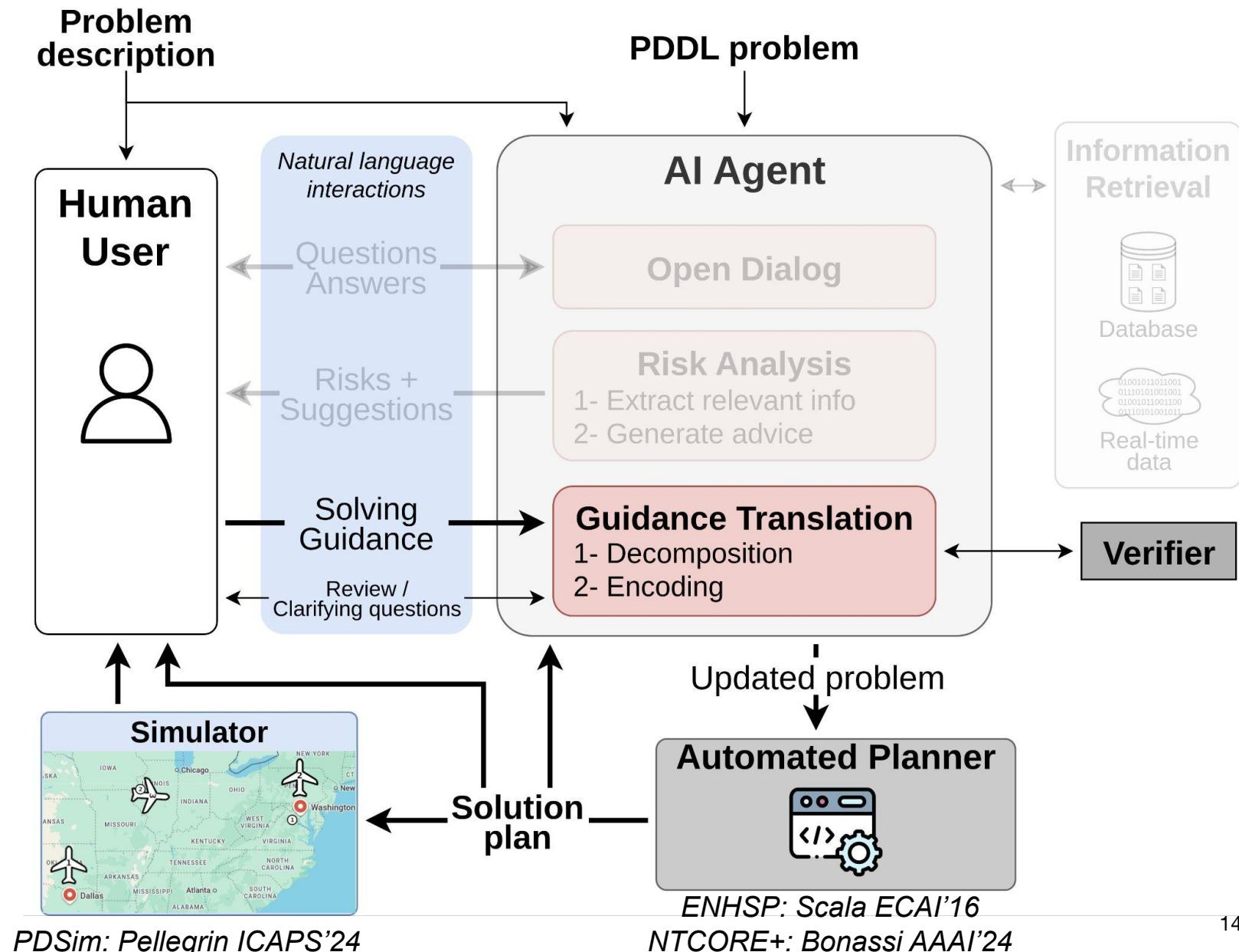
- Retrieve **external** information (RAG) and real-time APIs.
- Can generate real-time **weather** constraints, not modeled in original PDDL problem



Main capabilities: Chat, Suggestions, Translation

Main contribution: Planning + Translation

- **Translate** human guidance into planning constraints
- The updated problem is **solved by symbolic planner**
- **Simulator** to visualize plan



No constraints**Plans****Previous:**

None

Current:

None

Setting: DEFAULT

Planning mode: anytime, TO=15.0

Problem (zenoreal):

- NumericTCORE/benchmark/ZenoTravel-no-constraint/domain_with_n.pddl
- PDDL/zenoreal.pddl

==== ADDING CONSTRAINT ===

Enter your constraint:**1) Human input**

Elapsed Time: 0.0 s

Confirm

Translate

Risk Analysis

Chat

Plan

R0 - Only use plane1

- D1- Plane2 cannot board any passengers
- D2- Plane2 cannot debark any passengers
- D3- Plane2 cannot fly slow between any cities
- D4- Plane2 cannot fly fast between any cities
- D5- Plane2 cannot refuel
- D6- Plane3 cannot board any passengers
- D7- Plane3 cannot debark any passengers
- D8- Plane3 cannot fly slow between any cities
- D9- Plane3 cannot fly fast between any cities
- D10- Plane3 cannot refuel

2) Added Constraints

- Plane3 cannot fly slow between any cities
- Plane3 cannot fly fast between any cities
- Plane3 cannot refuel

Are you satisfied with the decomposition? If not, provide any desired feedback or type 'explain'.

User: yes

Encoding ...

Elapsed Time: 0.0 s

Confirm

Translate

Risk Analysis

Chat

Plan

Plans

Previous:

None

Current:

None

R0 - Only use plane1

D1- Plane2 cannot board any passengers
D2- Plane2 cannot debark any passengers
D3- Plane2 cannot fly slow between any cities
D4- Plane2 cannot fly fast between any cities
D5- Plane2 cannot refuel
D6- Plane3 cannot board any passengers
D7- Plane3 cannot debark any passengers
D8- Plane3 cannot fly slow between any cities
D9- Plane3 cannot fly fast between any cities
D10- Plane3 cannot refuel

3) Plan

- PDDL/zenoreal.pddl

Constraints loaded

==== PLANNING ===

Compiling ... OK [1.52s]

Planning (anytime, TO=15.0s) ... OK [15.06s]

Plans

Previous:

None

Current:

Plan-Length: 48
Metric: 15536.0
Planning time: 15.06
Found Plan:
0.0: (refuel_plane1)
1.0: (board_person4_plane1_boston)
2.0: (flyfast_plane1_boston_washington)
3.0: (board_person2_plane1_washington)
4.0: (board_person8_plane1_washington)
5.0: (flyslow_plane1_washington_boston)
6.0: (refuel_plane1)
7.0: (flyslow_plane2_washington_washington)
8.0: (flyslow_plane1_boston_dallas)
9.0: (board_person9_plane1_dallas)
10.0: (flyfast_plane1_dallas_seattle)
11.0: (debark_person9_plane1_seattle)
12.0: (refuel_plane1)
13.0: (flyslow_plane1_seattle_denver)
14.0: (debark_person4_plane1_denver)
15.0: (flyslow_plane1_denver_washington)
16.0: (refuel_plane1)
17.0: (flyslow_plane1_washington_seattle)
18.0: (flyslow_plane1_seattle_dallas)

Elapsed Time: 16.5 s

Confirm

Translate

Risk Analysis

Chat

Plan

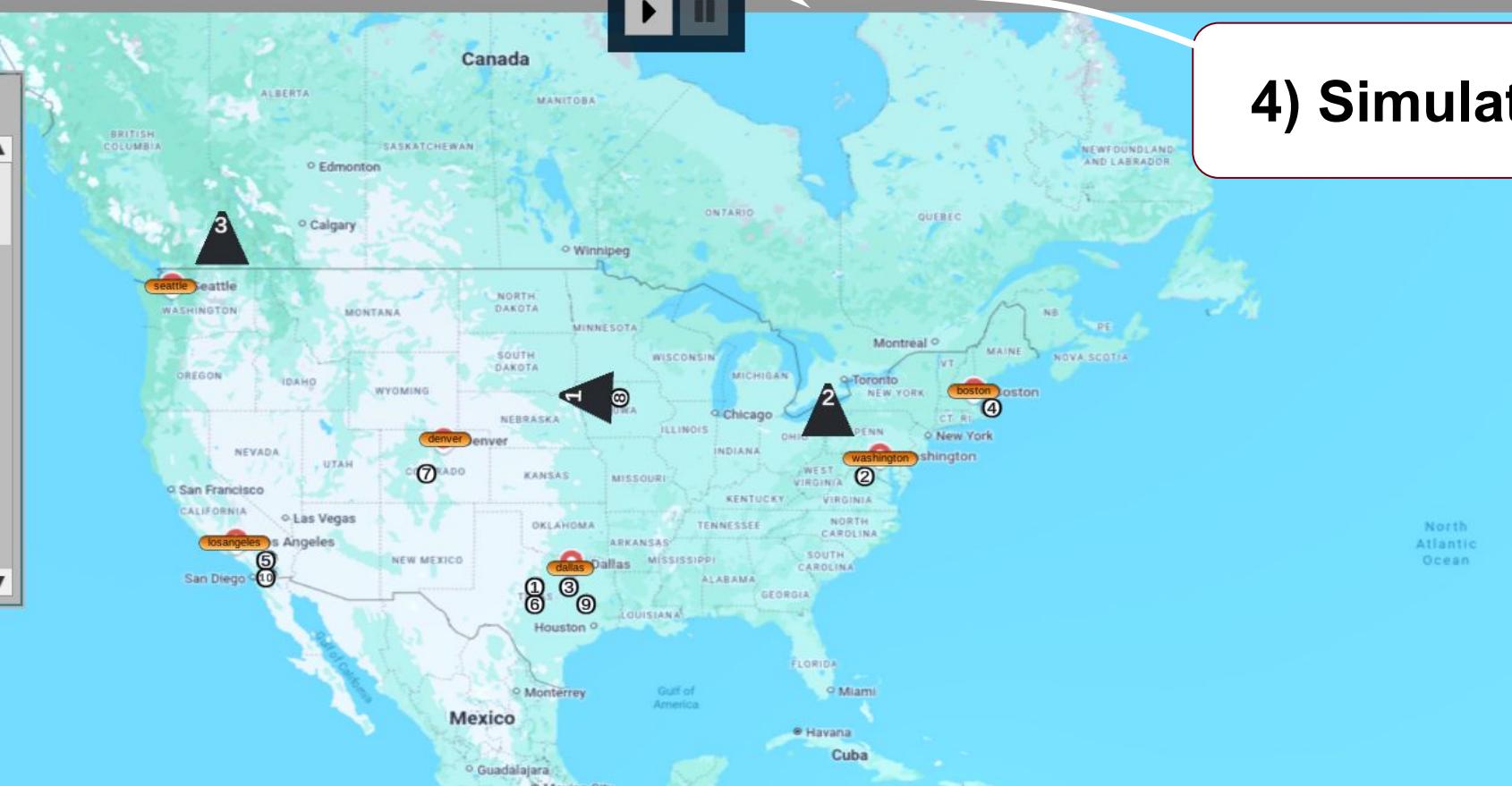
ZenoR

PDSim

4) Simulation

Plan Actions

```
refuel (plane1)  
flyslow (plane1, boston, denver)  
flyfast (plane1, denver, washington)  
refuel (plane1)  
board (person8, plane1, washington)  
flyslow (plane1, washington, denver)  
debark (person8, plane1, denver)  
flyslow (plane1, denver, boston)  
board (person4, plane1, boston)
```



Plan Panel

Action Tab

Speed Controls

Object Info Panel

Camera Controls

Elapsed Time: 16.5 s

Confirm

Translate

Risk Analysis

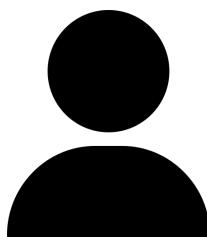
Chat

Plan

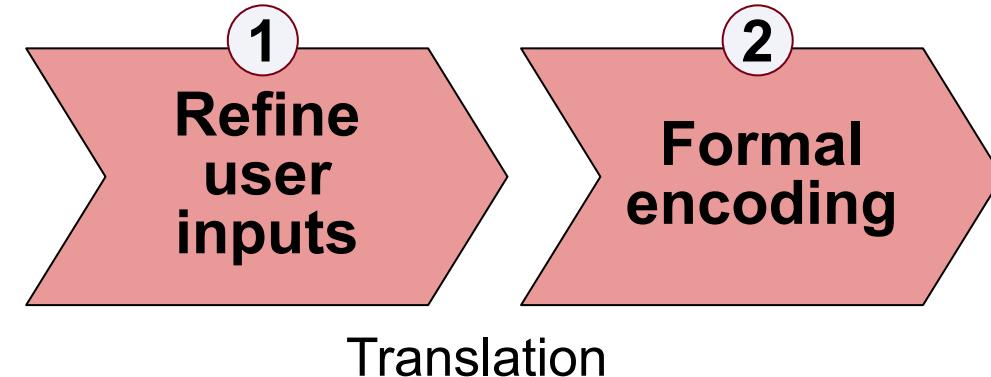
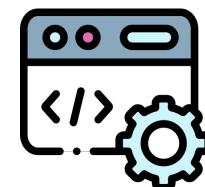
Guidance Translation

Translate user inputs as guidance for the solver

Two-step process:



User



Automated
Solver

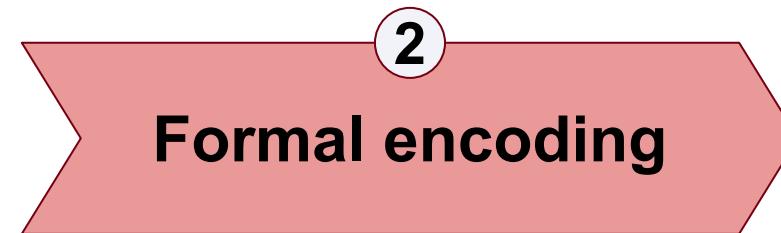
Refinements of user inputs

Example: “Only use robot2”

- Simple but **not straightforward**: must be rephrased to “Never use robot1”
- Must **clarify** what “*using a robot*” means
- Planner only supports **state-based** constraints: can’t directly constrain actions
- Refined inputs:
 - “*robot1 must always be located at initial location*”
 - “*robot1 tools must always be turned off*”

- Ask **clarifying questions**
- **Decompose** user input into independent, simpler **sub-constraints**
- **Rephrase** to match problem **characteristics**
- User **reviews** decomposition to **identify** any **misinterpretation**

Guidance Translation



2

Formal encoding

- **Parallel translation** of each sub-constraint into PDDL3
- Leverage **automated symbolic verifier** checking **syntax**
- **Back translation**: each encoded constraints are translated back into natural language for human review

- Translated constraints are **added** to the system and can be **activated** and **combined** at user's discretion
- All **activated constraints** are considered when **planning**

Evaluation of translation quality: Ablation Study

4 Settings to evaluate our translation pipeline:

ECODING: LLM alone

- + **VERIFIER**: Symbolic syntax checker
- + **DECOMP**: Constraint decomposition
- + **HUMAN**: Human interventions on decomposition

Evaluation of translation quality: Ablation Study

Model:
Claude Sonnet 4
(thinking enabled)

Setting	Translation		Human interventions	
	Parsable	Correct	Time (s)	
Encoding	26	19	29.3 ± 12.3	0
+ Verifier	30	20	35.8 ± 13.5	0
+ Decomposition				
+ Human				

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Correct Syntax

- LLM alone makes syntax mistakes
- Symbolic verifier feedback fixes syntax mistakes

Evaluation of translation quality: Ablation Study

Model:
Claude Sonnet 4
(thinking enabled)

Setting	Translation		Human interventions	
	Parsable	Correct	Time (s)	
Encoding	26	19	29.3 ± 12.3	0
+ Verifier	30	20	35.8 ± 13.5	0
+ Decomposition	30	20	55.0 ± 26.2	0
+ Human	30	27	81.9 ± 53.7	12

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Satisfying semantic accuracy

- Decomposition no direct effect
- But allows for human review
- Human intervention significantly improves correctness

Evaluation of translation quality: Ablation Study

Model:
Claude Sonnet 4
(thinking enabled)

Setting	Translation		Human interventions
	Parsable	Correct	
Encoding	26	19	29.3 ± 12.3
+ Verifier	30	20	35.8 ± 13.5
+ Decomposition	30	20	55.0 ± 26.2
+ Human	30	27	81.9 ± 53.7

Table 1: Ablation study reporting syntax and semantic accuracy ($N = 30$)

Seems faster than human experts

- Ours ~82s (SD=53.7) vs. Prior work 180s (SD=78)
- But comparison maybe unfair
 - similar but not identical constraints

Effects on plan cost - Experiment Setup

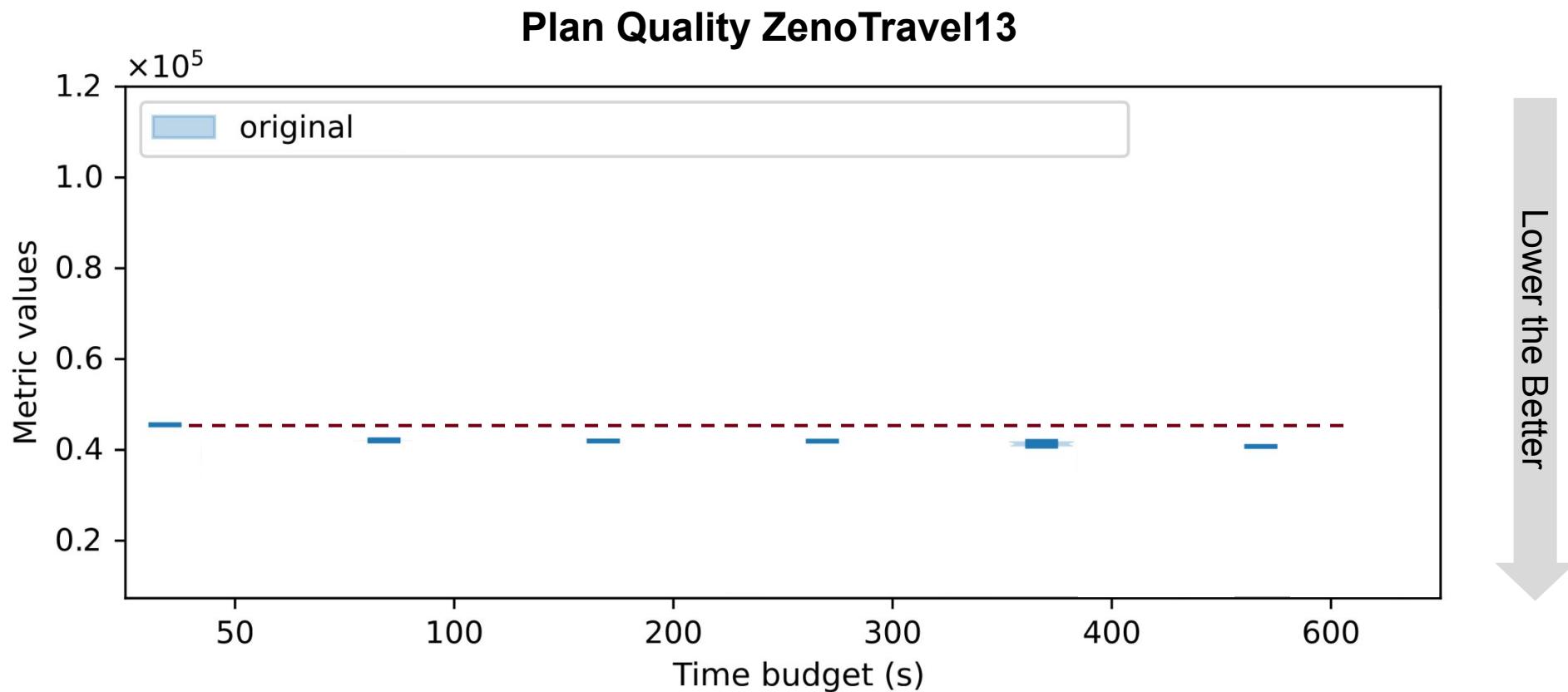
- Baselines:
 - Solving original problem (*original*) (N=10)
 - Using random valid constraints (*random*) + AND/OR combinations (N=30)
- Our approach (*human*):
 - Using relevant complementary constraints + all AND combinations (N=31)
- Use limited time budget from 50s to 600s
 - **Constraints** induce **delays** (translation / compilation), reducing effective planning time
- Measure:
 - Planning success ratio
 - Plan quality / cost (e.g. fuel consumption)

Effects on plan cost - Positive Results

Translation takes time
⇒ reduced effective planning time

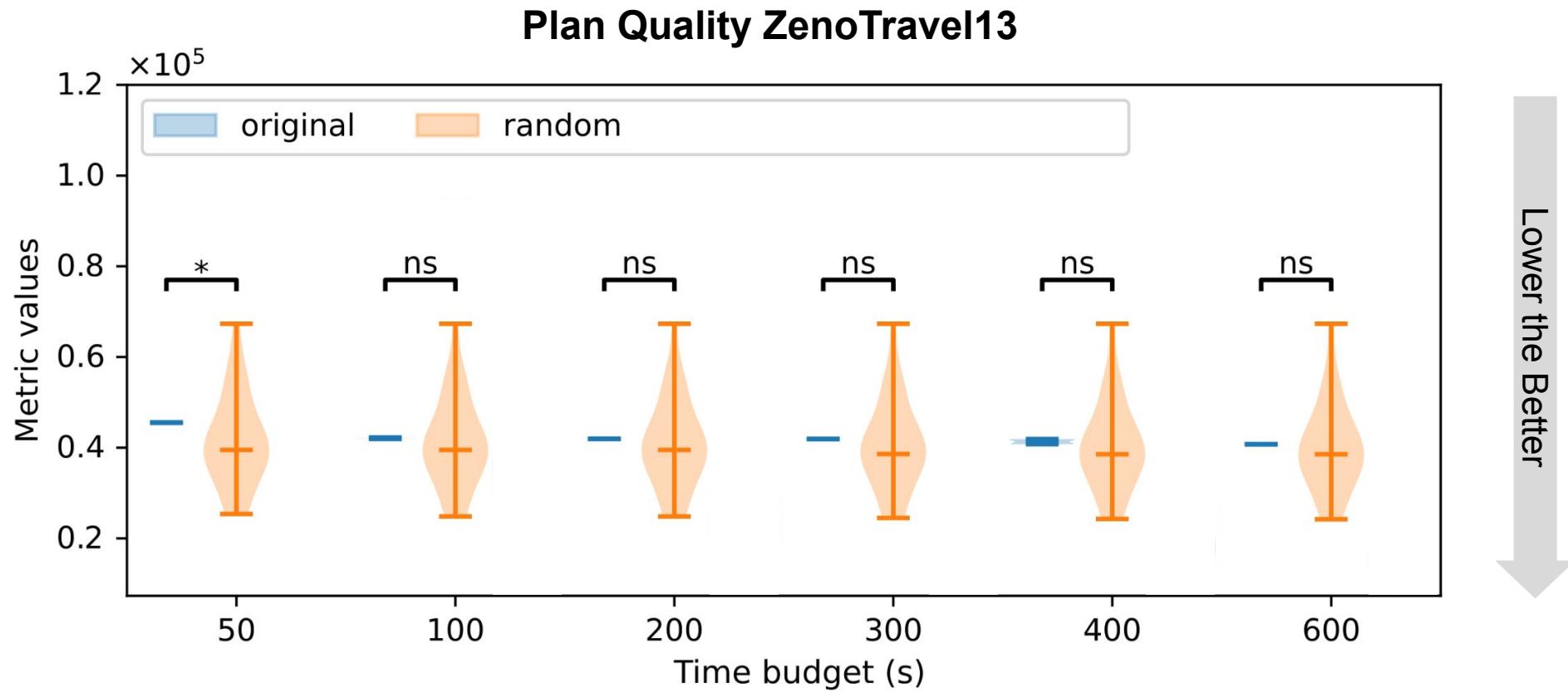
Eventually solves all problems

Effects on plan cost - Positive Results



Original barely improves with time

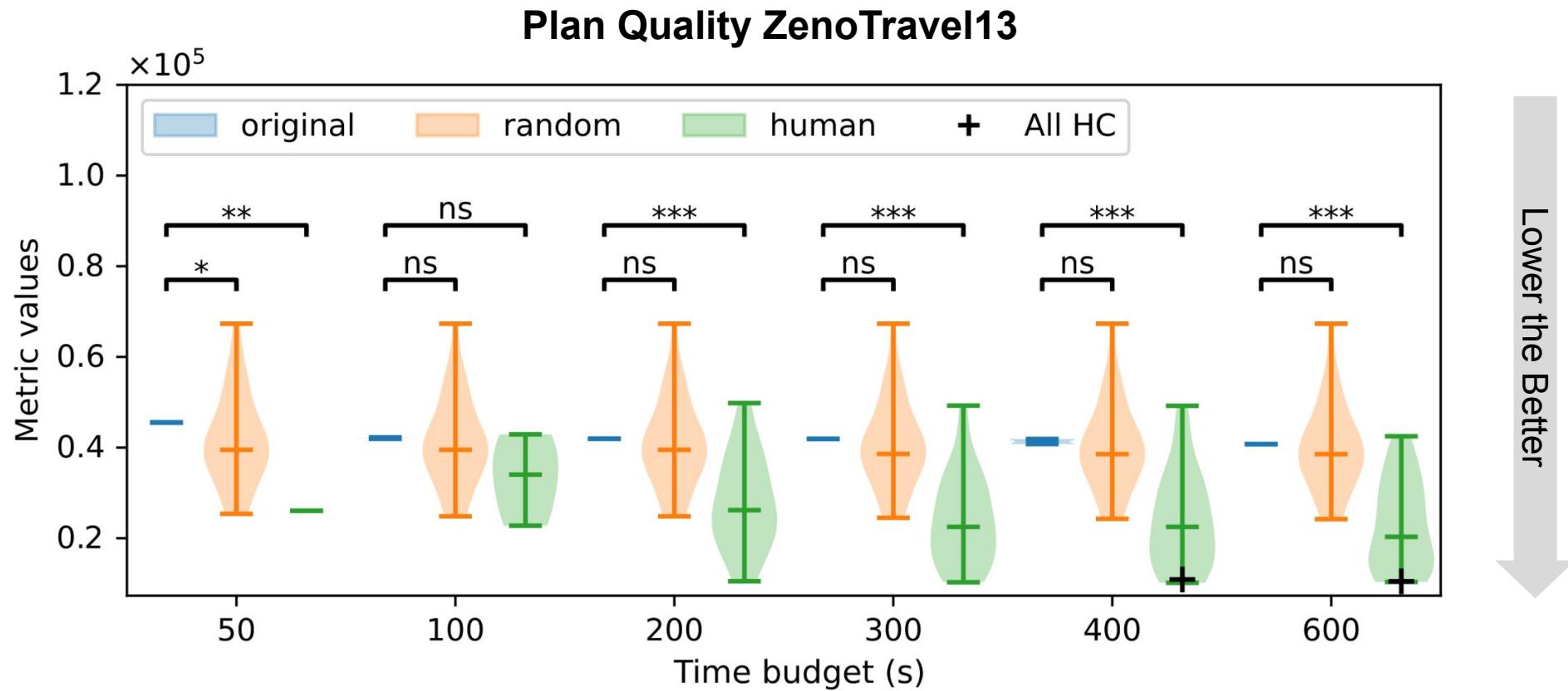
Effects on plan cost - Positive Results



Original barely improves with time

Random constraints have random effects

Effects on plan cost - Positive Results

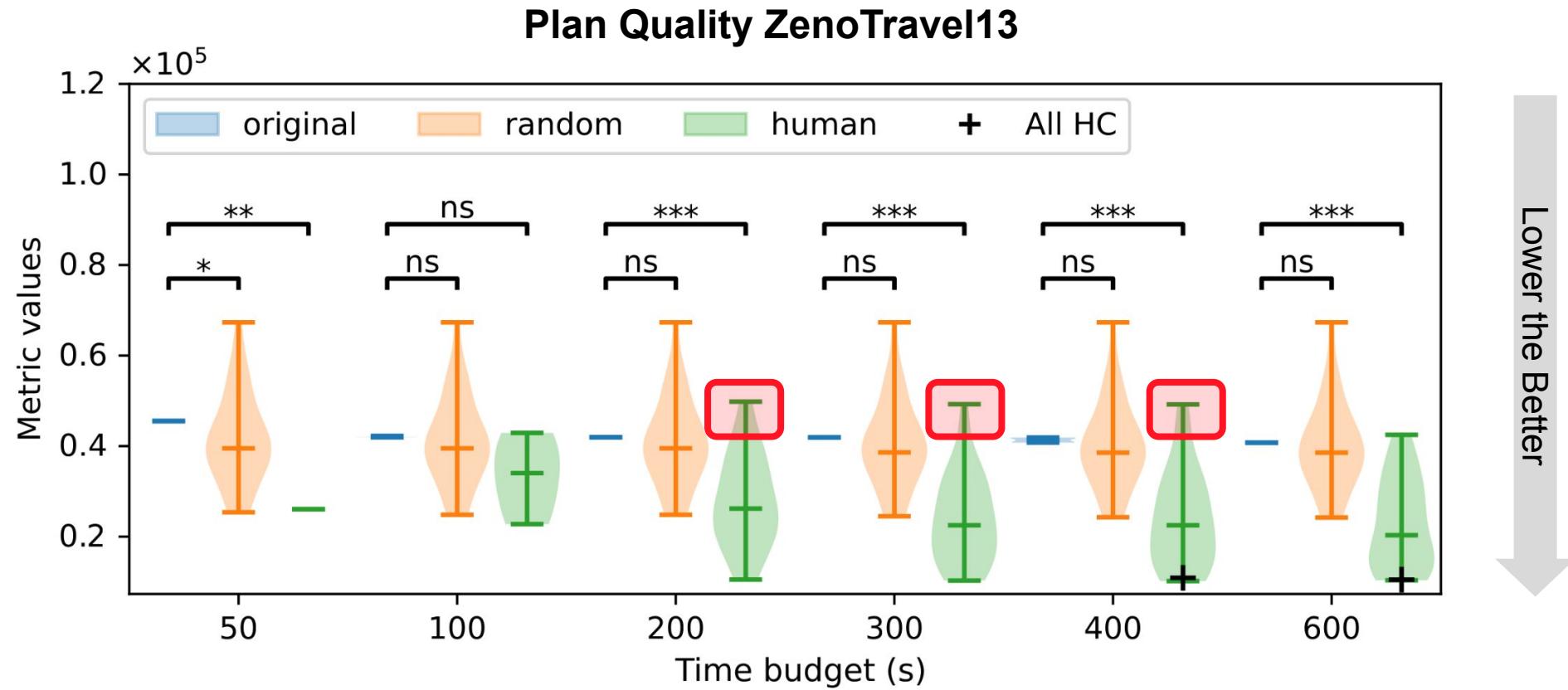


Original barely improves with time

Random constraints have random effects

Our approach leads to significant improvements

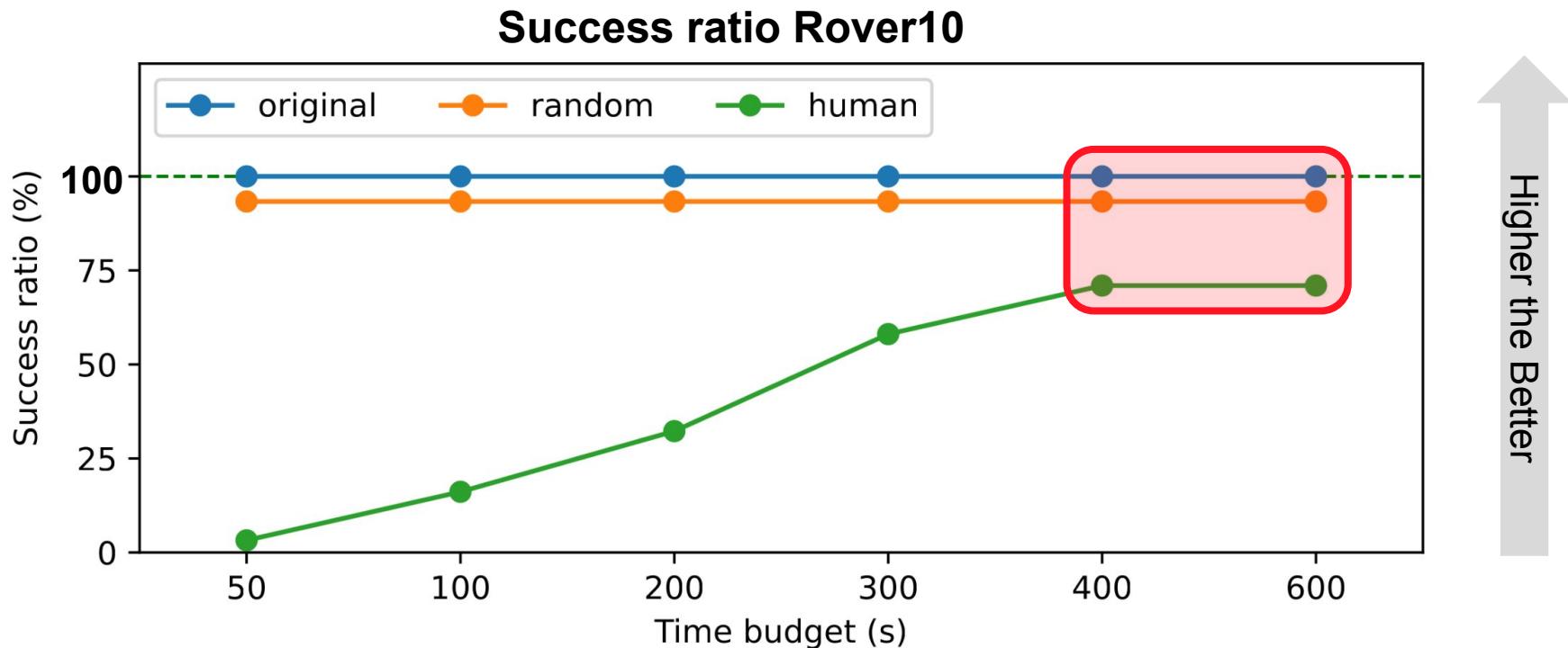
Effects on plan cost - Negative Results



Some human constraints are worse than original

Possible explanation:
Small effective planning time

Effects on plan cost - Negative Results

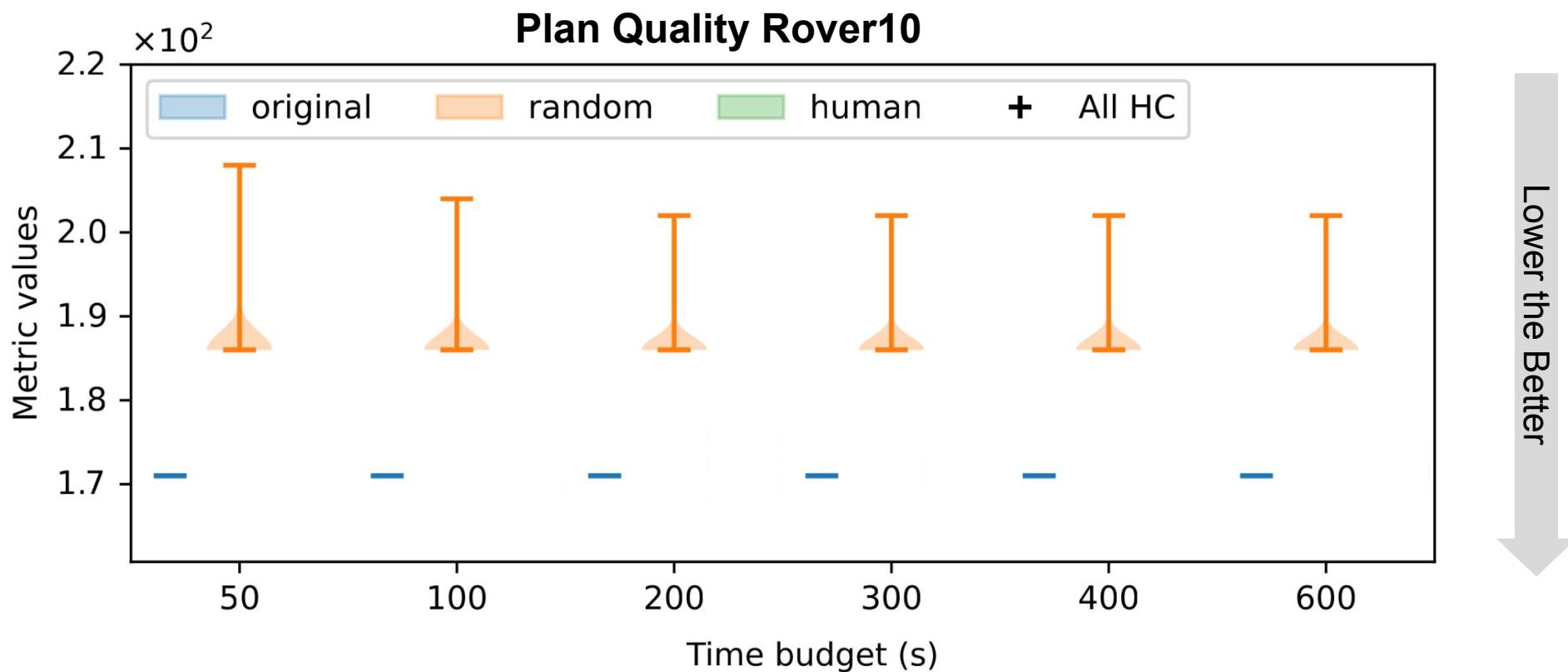


Unexpected lower success results
Planner timeout?

Human constraints are all feasible

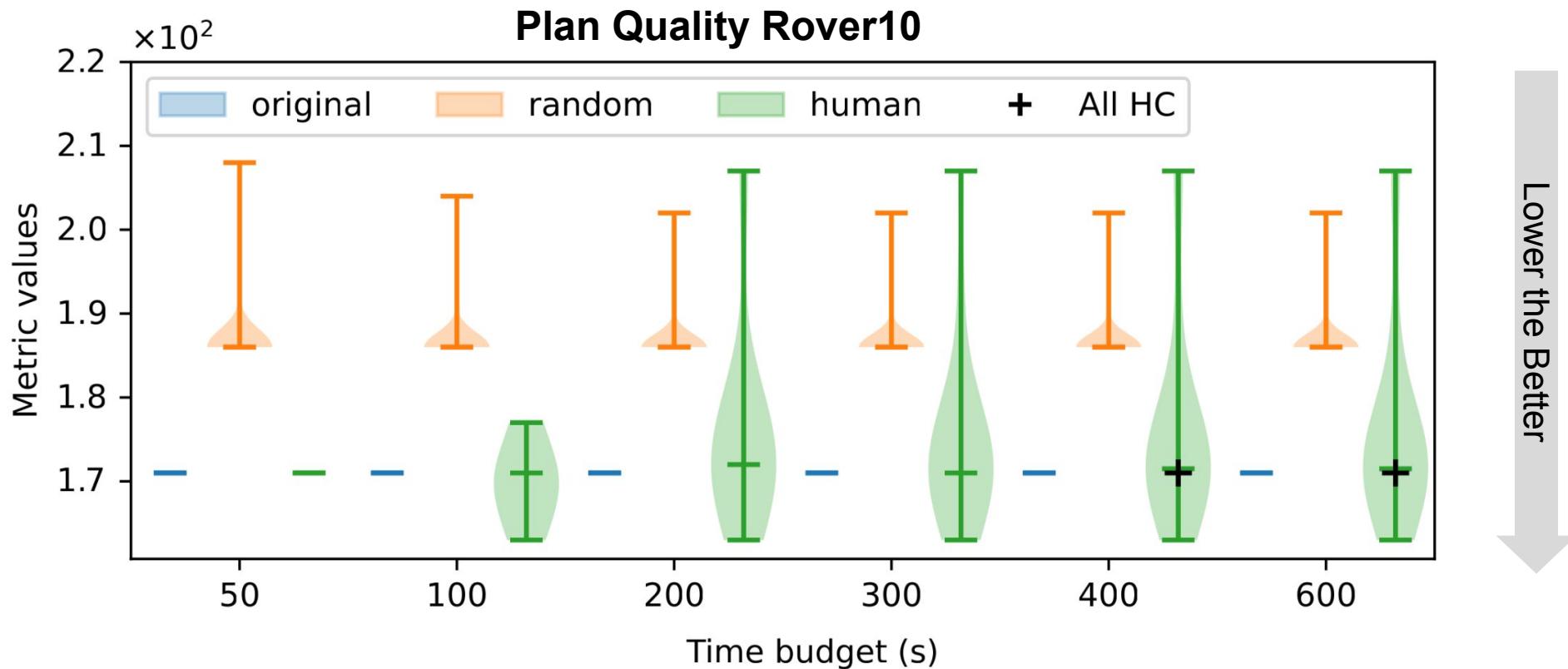
Not effective for all problem

Effects on plan cost - Negative Results



Random constraint are
always worse than original

Effects on plan cost - Negative Results



Random constraint are
always worse than original

Our approach is often
worse for this problem

Discussion

Main assumption is flawed

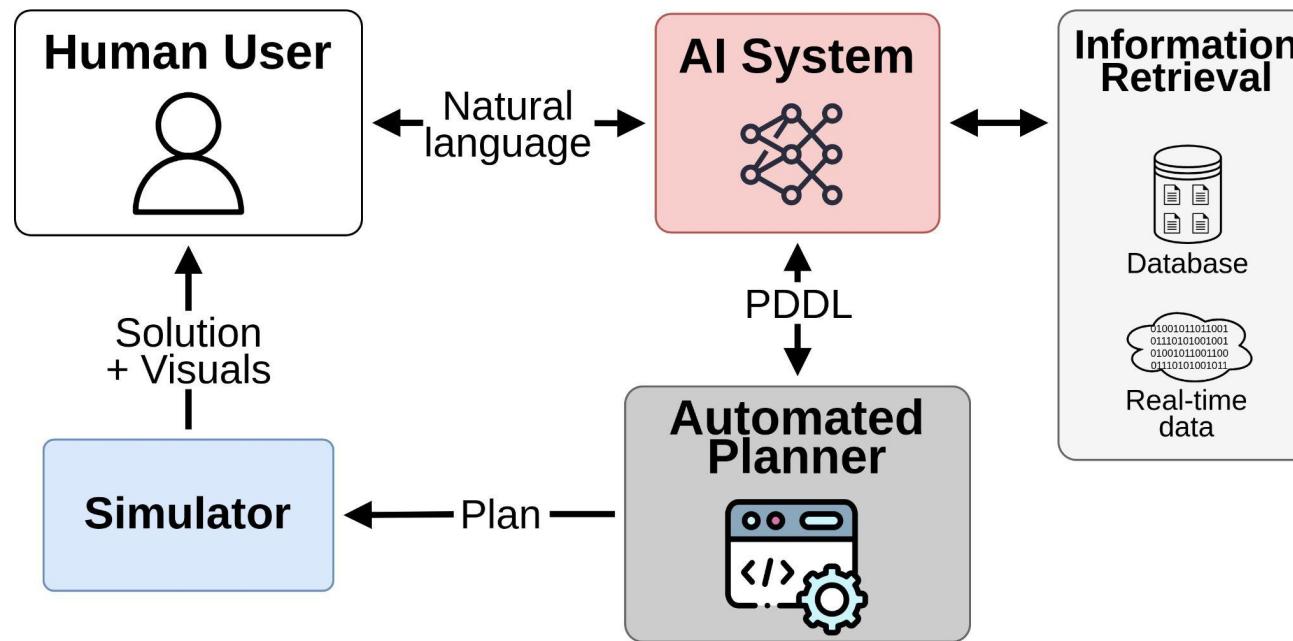
- Trying to reduce the search space with hard constraints, even with “relevant” constraints, does not seem to systematically improve performances in all cases.

Other approaches

- Now looking into other formalisms to better leverage human inputs:
 - soft constraints
 - linear programming

Conclusion

Hybrid collaborative planning framework (neuro-symbolic)



Creates a **collaborative, mixed-initiative planning** scheme where the human can influence problem solving, **without** technical expertise requirements

Conclusion

Accessibility

- Never interact with PDDL
- Able to chat and get insights on problem
- Relevant information highlighted

Translation

- Consistent correct syntax
- Improved semantic accuracy
- “Translate faster than technical experts”

Performances

- Translation delays can be worth to do
- But currently not reliable for all problems

A Collaborative Numeric Task Planning Framework based on Constraint Translations using LLMs

Q&A

Feel free to reach out!

Anthony Favier: antfav24@mit.edu

Ngoc La: ntmla@mit.edu

Pulkit Verma: pulkitv@mit.edu

Julie A Shah: julie_a_shah@csail.mit.edu

Paper PDF

Come see our **Demo!**
“An LLM-powered Collaborative
Numeric Task Planning Framework”

Backup Slides

Solution quality: Used constraints and objective

(human) ZenoTravel13 constraints (before AND combinations)

Objective: (:metric minimize (total_fuel_used))

- Only use plane1
- Person7 should never move
- Planes should only fly slowly
- Plane1 should never fly to the same city more than 3 times
- Person1 and person3 should travel together
 - human compilation: 7.8s (SD=2.9)
 - random compilation: 3.2s (SD=0.5)

(human) Rover10 constraints (before AND combinations)

Objective: (:metric minimize (total-energy-used))

- Rover2 should never be used
- Rover0 should handle soil and rock data from waypoint4
- No rover should ever be in waypoint2 or waypoint5
- Rover1 should take all images
- Waypoint6 should always have the same rock sample
 - human compilation: 30.8s (SD=3.2)
 - random compilation: 31.3s (SD=3.9)

Evaluation of translation quality: Ablation Study

4 Settings to evaluate our translation pipeline:

ECODING: LLM alone

+ **VERIFIER**: symbolic syntax checker

+ **DECOMP**: constraint decomposition

+ **HUMAN**: human interventions on decomposition

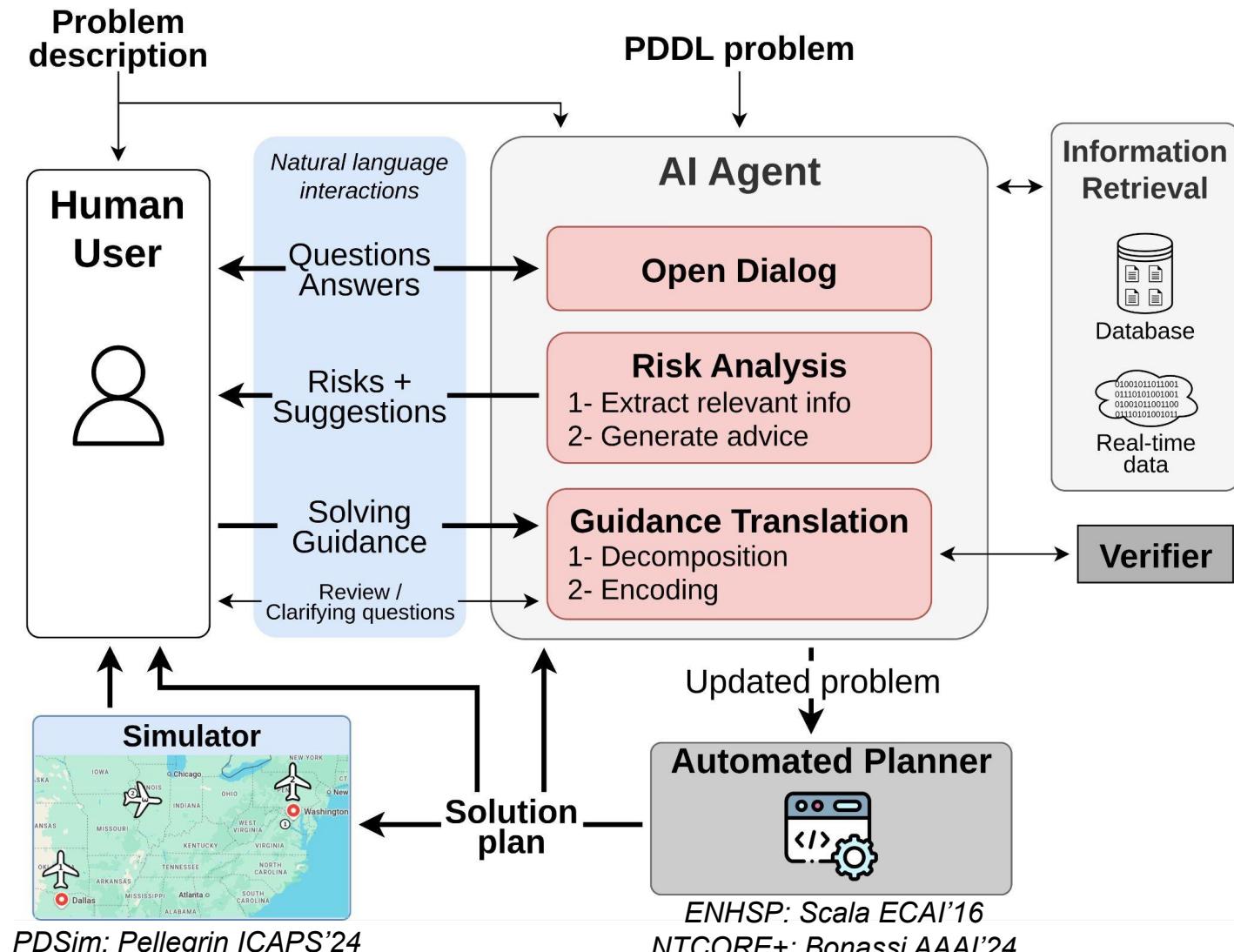
- 15 predefined constraints for two IPC numerical problems: 8 (ZenoTravel13) + 7 (Rover10)
- Constraints are arbitrarily more or less ambiguous
 - E.g., “*X should always be located at L*” vs. “*Never use X*”
- Run twice for each constraint
- Human interventions were as simple and short as possible.

An LLM-powered Collaborative Numeric Task Planning Framework

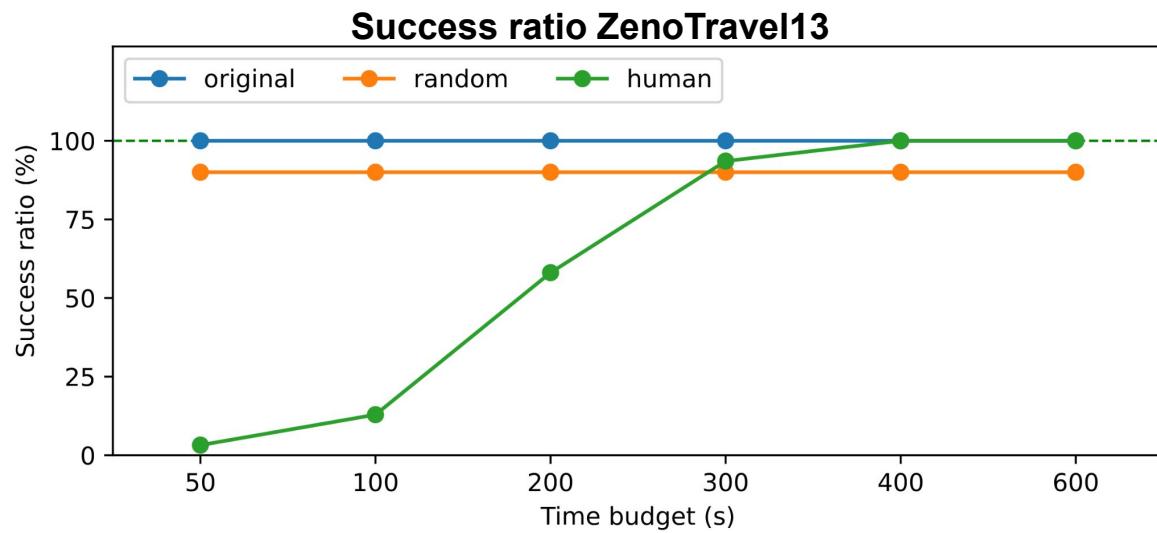
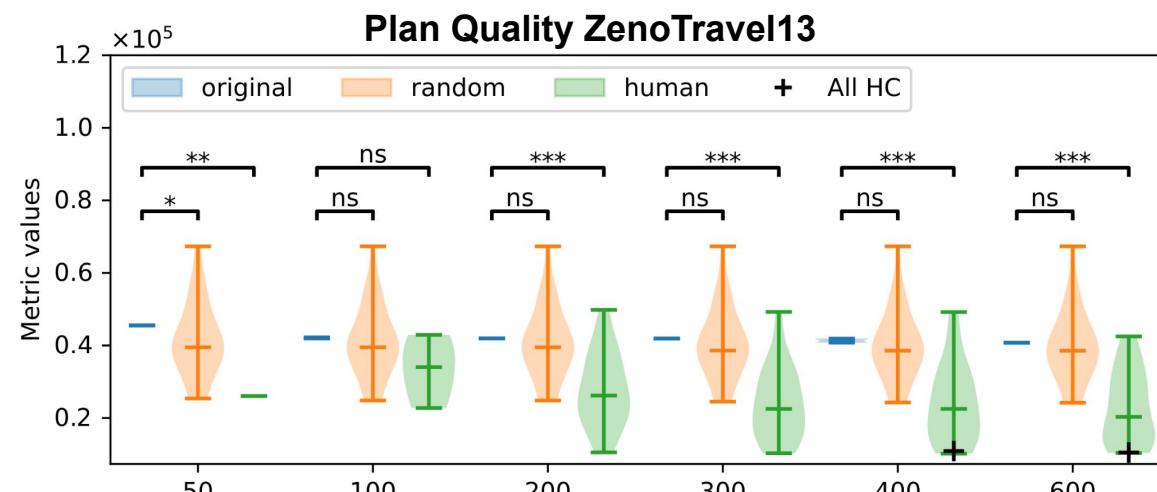
Anthony Favier, Pulkit Verma, Ngoc La, Julie A Shah

Human **guide** can influence planning,
without technical expertise

Paper PDF



IPC Problem: ZenoTravel13



IPC Problem: Rover10

